matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesSpiegelung des R²
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Spiegelung des R²
Spiegelung des R² < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung des R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 So 29.06.2008
Autor: mempys

Hallo!
Ich versteh gerade eine Aufgabe nicht und hoffe ihr könnt mir weiterhelfen...

Wir betrachten den euklidischen Vektorraum R²mit dem Standardskalarprodukt [mm] <\vec{x},\vec{y}> :=x_{1}y_{1}+x_{2}y_{2} [/mm]
und die lineare Abbildung A: R² [mm] \to [/mm] R²
[mm] \vektor{x_{1}\\ x_{2}} \mapsto \vektor{a_{11}x_{1}+a_{12}x_{2}\\ a_{21}x_{1}+a_{22}x_{2}} [/mm]
mit [mm] v_{1}=-2 [/mm] , [mm] v_{2}=-1 [/mm]

Ich soll nun [mm] a_{11},a_{12},a_{21},a_{22} \in [/mm] R so bestimmen,dass die lineare Abbildun A eine Spiegelung an der von [mm] \vektor{v_{1}\\ v_{2}} [/mm] erzeugenden Geraden beschreibt

mfg mempys

        
Bezug
Spiegelung des R²: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 So 29.06.2008
Autor: Al-Chwarizmi


> Wir betrachten den euklidischen Vektorraum R²mit dem
> Standardskalarprodukt [mm]<\vec{x},\vec{y}> :=x_{1}y_{1}+x_{2}y_{2}[/mm]
>  
> und die lineare Abbildung A: R² [mm]\to[/mm] R²
>  [mm]\vektor{x_{1}\\ x_{2}} \mapsto \vektor{a_{11}x_{1}+a_{12}x_{2}\\ a_{21}x_{1}+a_{22}x_{2}}[/mm]
>  
> mit [mm]v_{1}=-2[/mm] , [mm]v_{2}=-1[/mm]
>  
> Ich soll nun [mm]a_{11},a_{12},a_{21},a_{22} \in[/mm] R so
> bestimmen,dass die lineare Abbildung A eine Spiegelung an
> der von [mm]\vektor{v_{1}\\ v_{2}}[/mm] erzeugten Geraden
> beschreibt

  
hallo mempys,

ich weiss nicht, ob du eine Lösung vorlegen sollst, die sich
ganz im Rahmen der Matrixwelt abspielt. Dann müsste dies
wohl etwa so vorgehen:

            [mm] A=D^{-1}SD [/mm]

mit einer Drehung D, die den Vektor [mm] \vec{v} [/mm] auf einen
Vektor abbildet, der auf der x-Achse liegt, und mit der
Spiegelung S (=Spiegelung an der x-Achse)

(ich benütze hier x und y anstelle von [mm] x_1 [/mm] und [mm] x_2 [/mm] !)

Du kannst es aber auch mit ganz gewöhnlicher Vektor-
geometrie versuchen. Die von [mm] \vec{v} [/mm] erzeugte Gerade g
hat die Gleichung   y=2x  oder die Parameterdarstellung
x=t, y=2t.
Suche den Fusspunkt  [mm] F(t_F/2*t_F) [/mm] des Lotes von
einem Punkt  P(x/y) auf diese Gerade. Für den Spiegel-
punkt [mm] \overline{P} [/mm] von P bezüglich g  gilt dann:
[mm] \overrightarrow{P\overline{P}}=2*\overrightarrow{PF} [/mm]

Aus den berechneten Koordinaten von [mm] \overline{P} [/mm] kann man die
Matrix A leicht ablesen.

Gruß     al-Chw.      

Bezug
                
Bezug
Spiegelung des R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Mo 30.06.2008
Autor: mempys

Hallo!
Ja ich muss eine Matrix rausbekommen,dahe warscheinlich auch nach deiner schon beschriebenen Methode rechnen
"eine Lösung vorlegen, die sich
ganz im Rahmen der Matrixwelt abspielt:

            $ [mm] A=D^{-1}SD [/mm] $

Nur eine frage habe ich noch,wie komme ich zu den S Koordinaten?D ist mein [mm] \vec{v} [/mm] ,das habe ich doch richtig verstanden?!

gruß mempys

Bezug
                        
Bezug
Spiegelung des R²: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Mo 30.06.2008
Autor: Al-Chwarizmi


> Hallo!
>  Ja ich muss eine Matrix rausbekommen,dahe warscheinlich
> auch nach deiner schon beschriebenen Methode rechnen

Eine Matrix als Lösung rausbekommen kannst du auch mit
der anderen vorgeschlagenen Methode. Ich würde dir sogar
empfehlen, beide Lösungswege auszuprobieren. das erweitert
den mathematischen Horizont...

> "eine Lösung vorlegen, die sich
>  ganz im Rahmen der Matrixwelt abspielt:
>  
> [mm]A=D^{-1}SD[/mm]
>  
> Nur eine frage habe ich noch,wie komme ich zu den S
> Koordinaten?D ist mein [mm]\vec{v}[/mm] ,das habe ich doch richtig
> verstanden?!
>  
> gruß mempys


hi mempys,

D  soll eine 2x2-Drehmatrix sein, die den Vektor [mm] \vec{v} [/mm]  in einen
Vektor überführt, der in x-Richtung zeigt. Den notwendigen Dreh-
winkel kannst du mit elementarer Trigonometrie ermitteln.
S ist die 2x2-Matrix, welche die Spiegelung an der x-Achse beschreibt,
also müsste gelten:

             [mm] S*\vektor{x\\y}=\vektor{x\\-y} [/mm]

[mm] D^{-1} [/mm] ist die zu D inverse Drehmatrix.

al-Chw.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]