matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenSpiegelung an einer Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Abbildungen und Matrizen" - Spiegelung an einer Geraden
Spiegelung an einer Geraden < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung an einer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Fr 22.09.2006
Autor: mc_plectrum

Aufgabe
Die Abbildungsmatrix für die Spiegelung an einer Geraden g: [mm] \vec x [/mm] = [mm] \gamma * \vec u[/mm] lautet T = [mm] \bruch{1}{25}*\begin{pmatrix} -7 & 24 \\ 24 & 7 \end{pmatrix}[/mm]
Bestimme einen Richtungsvektor von g.

Hallo!
Wie bestimme ich den Richtungsvektor? Benötige einen Einstiegspunkt bzw. Startansatz.

Mfg mc_plectrum

        
Bezug
Spiegelung an einer Geraden: Tip
Status: (Antwort) fertig Status 
Datum: 17:47 Fr 22.09.2006
Autor: leduart

Hallo mc_plectrum
Alle vektoren, ausser denen auf der Geraden ändern ihre Richtung bei der Spiegelung. die senkrechten auf der Geraden bleiben senkrecht, werden aber umgekehrt!
Reicht das?
Gruss leduart

Bezug
                
Bezug
Spiegelung an einer Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Sa 23.09.2006
Autor: mc_plectrum


Bezug
                        
Bezug
Spiegelung an einer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Sa 23.09.2006
Autor: mc_plectrum

Danke für die Antwort! Der Richtungvektor wäre doch dann das [mm] \vec u [/mm] oder? Ich hatte erst versucht mit der Formel für eine beliebige Ursprungsgerade also: [mm] T_g=\begin{pmatrix} \bruch{u^2-v^2}{u^2+v^2}& \bruch{2uv }{u^2+v^2}\\ \bruch{2uv }{u^2+v^2}& \bruch{u^2-v^2}{u^2+v^2} \end{pmatrix}[/mm]die zwei Komponenten zu berechnen, aber das würde in diesem Fall ja nur durch raten funktionieren und z.b. [mm] \vec u={3 \choose 4} [/mm] als möglichen Richtungvektor liefern. Aber wie kann ich den Richtungsvektor berechnen?

Bezug
                                
Bezug
Spiegelung an einer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 23.09.2006
Autor: Fulla

hi mc_plectrum!

ich denke, du liegst da völlig richtig!

mir ist allerdings schleierhaft, wie du auf diese matrix kommst...
ich habs so gemacht:

ich will einen vektor [mm] \overrightarrow{u}=\vektor{x\\x}, [/mm] der nach der spiegelung immernoch derselbe ist. also muss gelten:

[mm]T*\overrightarrow{u}=\overrightarrow{u}\gdw \pmat{-0,28&0,96\\0,96&0,28}*\vektor{x\\y}=\vektor{x\\y}[/mm]

[mm] \Rightarrow \pmat{-0,28x+0,96y\\0,96x+0,28}=\vektor{x\\y} [/mm]

[mm]-0,28x+0,96y=x[/mm]
[mm]0,96x+0,28y=y[/mm]

[mm] \Rightarrow[/mm]  [mm]x=\bruch{3}{4}y[/mm]

also z.b. [mm] \overrightarrow{u}=\vektor{3\\4} [/mm]

aber du kannst auch jedes andere vielfache dieses vektors nehmen,
z.b. [mm] \vektor{\bruch{3}{4}\\1}, [/mm] denn dadurch ändert sich nur der betrag, nicht aber die richtung.


lieben gruß,
Fulla

Bezug
                                        
Bezug
Spiegelung an einer Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:47 Sa 23.09.2006
Autor: mc_plectrum

Vielen Dank für die Antwort!
Die Matrix war in der Aufgabenstellung vorgegeben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]