matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesSpiegelung, Hyperebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Spiegelung, Hyperebene
Spiegelung, Hyperebene < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung, Hyperebene: Tipp, Ideen Lösungshilfe alles
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 15.01.2013
Autor: anna2013

Aufgabe
Sei die Hyperebene H in [mm] \IR^{n} [/mm] durch H = { [mm] x\in\IR^{n}| [/mm] <n,x> - b=0 } mit ||n||=1 (HESSEsche Normalform) gegeben.
Sei weiter ein Punkt [mm] a\in [/mm] H gegeben. Zeigen Sie, dass für den Bild von [mm] q\in \IR^{n} [/mm] unter Spiegelung [mm] \partial_{H} [/mm] an H gilt:

                  [mm] \partial_{H}(q) [/mm] = q+2*<n,a-q>*n

Halli Hallo,
Hat Jemand einen Tipp oder eine Idee, wie ich diese Aufgabe lösen  soll!!?

Danke im Voraus :-)

        
Bezug
Spiegelung, Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Di 15.01.2013
Autor: Leopold_Gast

Wenn [mm]q'[/mm] mit der angegebenen Formel der Spiegelpunkt von [mm]q[/mm] ist, dann mußt du ja nur zeigen:

1. Die Mitte von [mm]q[/mm] und [mm]q'[/mm], also [mm]m = \frac{1}{2} \left( q+q' \right)[/mm] liegt auf [mm]H[/mm].
2. Die Verbindungsvektor von [mm]q[/mm] nach [mm]q'[/mm], also [mm]q'-q[/mm], steht auf [mm]H[/mm] senkrecht, ist mithin also ein Vielfaches von [mm]n[/mm].

Das zweite kann man an der Formel unmittelbar ablesen, beim ersten muß man ein kleines bißchen rechnen. Um die Übersicht zu behalten, schreibe zur Abkürzung vorübergehend [mm]\lambda = \left \langle \, n \, , \, a-q \, \right \rangle[/mm], denn das ist ein Skalar. Beachte bei der Rechnung auch: [mm]\langle n \, , \, a \rangle = b[/mm] (denn [mm]a[/mm] liegt auf [mm]H[/mm]) und [mm]\langle n \, , \, n \rangle = b[/mm] (denn [mm]n[/mm] ist normiert).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]