matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikSpezifische Ladung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Spezifische Ladung
Spezifische Ladung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spezifische Ladung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Di 05.01.2010
Autor: Marc_hb

Hallo liebe Forumfreunde,

Ich soll durch die Gleichsetzung der Zentirpetalkraft und er Lorentzkraft, eine Gleichung für [mm] \bruch{e}{m} [/mm] bekommen.

[mm] F_{L}=F_{Z} [/mm]
m*v²/r=evB

Wir müssen [mm] v=\wurzel{2eU_{a}/m} [/mm] einsetzen

Dann die Gleichung quadrieren.


Aber wir müssen ein anderen Lösungsweg finden, in dem wir was für einsetzen oder in der Art.

Kann mir dabei jemand helfen?

Gruß, Marc

        
Bezug
Spezifische Ladung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Di 05.01.2010
Autor: Event_Horizon

Hallo!

Ich wüßte nicht, was man da anders machen sollte.

Zunächst kannst du die Gleichung ja einmal durch v teilen, denn es steht auf beiden Seiten. Dann deine Wurzel einsetzen, allerdings steht darin ebenfalls e/m. Forme die Gleichung so um, daß da sowas wie [mm] \frac{e^k}{m^k}=\left(\frac{e}{m}\right)^k... [/mm] steht, wobei k dann ein Bruch ist...

Also, letztendlich bist du schon auf dem richtigen weg, ich wüßte nicht, welchen anderen Weg man hier einschlagen könnte.

Bezug
                
Bezug
Spezifische Ladung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 Di 05.01.2010
Autor: Marc_hb

Hallo,

ich hab das noch ncith so richtig verstanden.

Nachdem ich v eingesetzt hab, bekomme ich:

[mm] \bruch{m*2*U*e}{r*m}=e*B [/mm]

wenn ich auf beiden Seiten e/m haben will:

[mm] \bruch{e*2*U}{r*m}=\bruch{e*B}{m} [/mm]

Wie komm ich nun auf:

[mm] (\bruch{e^k}{m^k})=(\bruch{e}{m})^k [/mm]

K soll ein Bruch sein, aber wie komm ich auf diesen Bruch?

Gruß, Marc

Bezug
                        
Bezug
Spezifische Ladung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Di 05.01.2010
Autor: chrisno

Ich habe nicht ganz verstanden, ob ihr bei der Berechnung eine extra Hürde aufgestellt bekommen habt.

$m [mm] \bruch{v^2}{r}=evB [/mm] $

da kannst Du doch erst einmal ein v kürzen.
Dann setz für v ein und quadrier auf beiden Seiten.
Es kürzt sich anschließend ein e un ein m heraus. Nach e/m umsortieren, fertig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]