matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisSpektrum einer Banachalgebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Spektrum einer Banachalgebra
Spektrum einer Banachalgebra < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spektrum einer Banachalgebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Sa 28.08.2010
Autor: dazivo

Hallo zusammen!

Momentan beschäftige ich mich ein bisschen mit Spektraltheorie. Hier wird das wichtige Resultat gezeigt, dass in jeder komplexen Banachalgebra mit Eins das Spektrum nicht leer sein kann. Als Gegenbeispiel wollte ich jedoch
eine Banachalgebra mit eins wo das Spektrum leer ist.
Die Schlussfolgerung aus dem obigen ist, dass man höchstens im reellen eine solche Algebra finden kann. Ich bringe jedoch kein solches Beispiel zustande.
Weiss jemand zufällig ein Gegenbeispiel?

Grüsse dazivo


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Spektrum einer Banachalgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Sa 28.08.2010
Autor: felixf

Moin davizo,

ich bin kein Experte, und in der Vorlesung  die ich mal zum Thema gehoert hab haben wir nur Banachalgebren ueber [mm] $\IC$ [/mm] angeschaut, aber evtl. kann ich dir trotzdem helfen :)

> Momentan beschäftige ich mich ein bisschen mit
> Spektraltheorie. Hier wird das wichtige Resultat gezeigt,
> dass in jeder komplexen Banachalgebra mit Eins das Spektrum
> nicht leer sein kann. Als Gegenbeispiel wollte ich jedoch
> eine Banachalgebra mit eins wo das Spektrum leer ist.
> Die Schlussfolgerung aus dem obigen ist, dass man
> höchstens im reellen eine solche Algebra finden kann. Ich
> bringe jedoch kein solches Beispiel zustande.
> Weiss jemand zufällig ein Gegenbeispiel?

Ich glaube der wichtige Punkt ist, dass das Spektrum eine Teilmenge vom Grundkoerper ist -- also bei einer reellen Banachalgebra eine Teilmenge von [mm] $\IR$. [/mm]

Wenn du dir jetzt z.B. die reelle Banachalgebra der $n [mm] \times [/mm] n$-Matrize ueber [mm] $\IR$ [/mm] anschaust (diese hat eine Eins), so gibt es da sicher Matrizen, die keine reellen Eigenwerte haben -- und somit ein leeres Spektrum.


Ich vermute allerdings, dass man eine reelle Banachalgebra "komplexifizieren" kann, also eindeutig in eine kleinste komplexe Banachalgebra einbetten kann, so dass z.B. das reelle Spektrum gerade das komplexe Spektrum geschnitten mit [mm] $\IR$ [/mm] ist. In dem Fall bekommt man natuerlich, dass das komplexe Spektrum immer [mm] $\neq \emptyset$ [/mm] ist (nach deinem oben erwaehnten Satz). Das ganze ist aehnlich wie in der linearen Algebra bei Matrizen: dort schaut man sich ja auch bei reellen Matrizen komplexe Eigenwerte an, obwohl $A - [mm] \lambda [/mm] I$ fuer komplexes [mm] $\lambda$ [/mm] keine reelle Matrix ist und somit strenggenommen keinen Sinn macht :)

LG Felix



Bezug
                
Bezug
Spektrum einer Banachalgebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:05 So 29.08.2010
Autor: dazivo

Hallo Felix

Ich habe mir schon gedacht, dass da die BA der reellen Matrizen reichen.
Mich hat intuitiv gestört, dass es ein operator $A$ geben soll mit [mm] $\lambda [/mm] Id - A$ für jedes [mm] $\lambda \in \IR$ [/mm] invertierbar. Aber im Nachhinein ist
$A := [mm] \pmat{ 0 & -1 \\ 1 & 0 }$ [/mm] das gewünschte Gegenbeispiel, denn das charakteristische Polynom ist [mm] $\lambda^2 [/mm] + 1$.

Danke vielmals für deine Hilfe
Gruss dazivo

Bezug
                        
Bezug
Spektrum einer Banachalgebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:19 So 29.08.2010
Autor: felixf

Moin davizo,

> Ich habe mir schon gedacht, dass da die BA der reellen
> Matrizen reichen.
> Mich hat intuitiv gestört, dass es ein operator [mm]A[/mm] geben
> soll mit [mm]\lambda Id - A[/mm] für jedes [mm]\lambda \in \IR[/mm]
> invertierbar. Aber im Nachhinein ist
> [mm]A := \pmat{ 0 & -1 \\ 1 & 0 }[/mm] das gewünschte
> Gegenbeispiel, denn das charakteristische Polynom ist
> [mm]\lambda^2 + 1[/mm].

noch einfacher: nimm die Banach-Algebra [mm] $\IC$ [/mm] ueber [mm] $\IR$: [/mm] jedes Element aus [mm] $\IC \setminus \IR$ [/mm] hat leeres Spektrum.

> Danke vielmals für deine Hilfe

Bitte :)

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]