matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesSpektralsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Spektralsatz
Spektralsatz < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spektralsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:46 Di 10.04.2012
Autor: Schachtel5

Hallo, ich habe zum Spektalsatz eine Verständnisfrage. Entschuldigung dass ich nachfrage, obwohl es schon so oft im Internet erklärt wird, aber ich verstehe es nicht. Also wie ich ihn kenne: Sei V ein endlichdimensionaler Vektorraum mit einem Skalarprodunkt. [mm] \alpha \in Hom_K [/mm] (V,V) ist genau dann normal, wenn eine geordnete Orthonormalbasis B von V existiert, so dass gilt:
i) Sei K= [mm] \IC. [/mm] Dann ist [mm] _B(\alpha)_B [/mm] eine Diagonalmatrix.
ii)Sei K= [mm] \IR. [/mm]
- ist [mm] \alpha [/mm] trigonalisierbar, so ist [mm] _B(\alpha)_B [/mm] eine Diagonalmatrix.
-Ist [mm] \alpha [/mm] nicht trigonalisierbar, so ist [mm] _B(\alpha)_B =\begin{pmatrix} \lambda_1 & & & & \\ 0 & \lambda_2 & & & & \\ \\ \\ 0&&&&& \lambda_r\\ &&&&&&A_1\\ \\ \\ &&&&&&&&&A_s \end{pmatrix} [/mm] wobei [mm] \lambda_j [/mm] Eigenwert von [mm] \alpha [/mm] und die [mm] A_j \in Mat_(\IR)(2,2) [/mm] mit [mm] A_j =\begin{pmatrix} a_j & b_j \\ -b_j & a_j \end{pmatrix} b_j \not=0 [/mm]
Was ich nicht verstehe ist, wieso wenn [mm] \alpha [/mm] trigonalisierbar ist, dass [mm] _B(\alpha)_B [/mm] eine Diagonalmatrix ist, also wieso ist es dann auf einmal diagonalisierbar? Ich weiss zwar, dass wenn [mm] \alpha [/mm] trigonalisierbar ist, dass das chpol in Linearfaktoren zerfällt und damit alle Eigenwerte reell sind, aber woher weiss ich denn, dass dann für jeden Eigenwert die algebraische=geometrische Vielfachheit übereinstimmt ? Ich hätte jetzt erst nur gedacht, dass die Darstellungsmatrix bezüglich B eine obere/untere Dreiecksmatrix ist. Ich hoffe, mir kann das jemand erklären, wäre sehr dankbar.
Lg

        
Bezug
Spektralsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 18.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]