matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenSpatprodukt, Vektorprodukt (2)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Spatprodukt, Vektorprodukt (2)
Spatprodukt, Vektorprodukt (2) < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spatprodukt, Vektorprodukt (2): richtig gelöst?
Status: (Frage) beantwortet Status 
Datum: 19:22 Sa 02.08.2008
Autor: BlubbBlubb

Aufgabe
Gegeben seien die Vektoren

[mm] \vec{a}=\vektor{1 \\ 2 \\ 2} [/mm]


[mm] \vec{b}=\vektor{1 \\ 1 \\ 1} [/mm]


[mm] \vec{c}=\vektor{3 \\ 1 \\ 0} [/mm]

Bestimmen Sie das Vektorprodukt [mm] \vec{a} \times \vec{b}, [/mm] das Volumen des Spats, das durch die drei Vektoren aufgespannt wird und die Projektion von [mm] \vec{b} [/mm] entlang des Vektor [mm] \vec{a}. [/mm]

meine vorgehensweise:

[mm] \vec{a} \times \vec{b}: [/mm]

[mm] \vektor{1 \\ 2 \\ 2} \times \vektor{1 \\ 1 \\ 1} [/mm]  =
[mm] \vektor{0 \\ 1 \\ -1} [/mm]


Volumen = Spatprodukt:

[mm] \vmat{ 1 & 2 & 2 \\ 1 & 1 & 1 \\ 3 & 1 & 0 }=1 [/mm]


Projektion von [mm] \vec{b} [/mm] entlang des Vektors [mm] \vec{a}: [/mm]

Formel: [mm] |\vec{b}|_{\vec{a}}=|\vec{b}|*cos(\alpha)=\bruch{\vec{b}*\vec{a}}{|\vec{a}|}=\vec{b}*\vec{a_0} [/mm]



[mm] |\vec{b}|_{\vec{a}}=\vektor{1 \\ 1 \\ 1}*\bruch{1}{3}*\vektor{1 \\ 2 \\ 2}=1 [/mm]

richtig gelöst?



        
Bezug
Spatprodukt, Vektorprodukt (2): Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Sa 02.08.2008
Autor: Somebody


> Gegeben seien die Vektoren
>  
> [mm]\vec{a}=\vektor{1 \\ 2 \\ 2}[/mm]
>  
>
> [mm]\vec{b}=\vektor{1 \\ 1 \\ 1}[/mm]
>  
>
> [mm]\vec{c}=\vektor{3 \\ 1 \\ 0}[/mm]
>  
> Bestimmen Sie das Vektorprodukt [mm]\vec{a} \times \vec{b},[/mm] das
> Volumen des Spats, das durch die drei Vektoren aufgespannt
> wird und die Projektion von [mm]\vec{b}[/mm] entlang des Vektor
> [mm]\vec{a}.[/mm]
>  meine vorgehensweise:
>  
> [mm]\vec{a} \times \vec{b}:[/mm]
>  
> [mm]\vektor{1 \\ 2 \\ 2} \times \vektor{1 \\ 1 \\ 1}[/mm]  =
> [mm]\vektor{0 \\ 1 \\ -1}[/mm]

[ok]

>  
>
> Volumen = Spatprodukt:
>  
> [mm]\vmat{ 1 & 2 & 2 \\ 1 & 1 & 1 \\ 3 & 1 & 0 }=1[/mm]

[ok]

>  
>
> Projektion von [mm]\vec{b}[/mm] entlang des Vektors [mm]\vec{a}:[/mm]
>  
> Formel:
> [mm]|\vec{b}|_{\vec{a}}=|\vec{b}|*cos(\alpha)=\bruch{\vec{b}*\vec{a}}{|\vec{a}|}=\vec{b}*\vec{a_0}[/mm]
>  
>
>
> [mm]|\vec{b}|_{\vec{a}}=\vektor{1 \\ 1 \\ 1}*\bruch{1}{3}*\vektor{1 \\ 2 \\ 2}=1[/mm]

[notok] müsste $= 5/3$ sein (aber nur kleiner Rechenfehler).


Bezug
                
Bezug
Spatprodukt, Vektorprodukt (2): Betrag eines Vektors
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Sa 02.08.2008
Autor: BlubbBlubb


> > [mm]|\vec{b}|_{\vec{a}}=\vektor{1 \\ 1 \\ 1}*\bruch{1}{3}*\vektor{1 \\ 2 \\ 2}=1[/mm]
>  
> [notok] müsste [mm]= 5/3[/mm] sein (aber nur kleiner Rechenfehler).
>  


[mm] \bruch{5}{3} [/mm] würd ich rausbekommen wenn ich rechnen würde: [mm] \bruch{1}{3} [/mm] + [mm] \bruch{2}{3} [/mm] + [mm] \bruch{2}{3} [/mm] = [mm] \bruch{5}{3} [/mm]

aber den betrag eines vektors rechne ich mit [mm] |\vec{a}|=\wurzel{a_1^2+a_2^2+a_3^2} [/mm]

somit wäre [mm] |\vec{b}|_{\vec{a}}=\wurzel{(\bruch{1}{3})^2+(\bruch{2}{3})^2+(\bruch{2}{3})^2}=1 [/mm]

Bezug
                        
Bezug
Spatprodukt, Vektorprodukt (2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Sa 02.08.2008
Autor: Somebody


> > > [mm]|\vec{b}|_{\vec{a}}=\vektor{1 \\ 1 \\ 1}*\bruch{1}{3}*\vektor{1 \\ 2 \\ 2}=1[/mm]
>  
> >  

> > [notok] müsste [mm]= 5/3[/mm] sein (aber nur kleiner Rechenfehler).
>  >  
>
>
> [mm]\bruch{5}{3}[/mm] würd ich rausbekommen wenn ich rechnen würde:
> [mm]\bruch{1}{3}[/mm] + [mm]\bruch{2}{3}[/mm] + [mm]\bruch{2}{3}[/mm] = [mm]\bruch{5}{3}[/mm]

[ok]
Dies ist der Wert des Ausdrucks (des Skalarproduktes), das Du hingeschrieben hast (die Länge der orthgonalen Projektion von [mm] $\vec{b}$ [/mm] auf die Richtung von [mm] $\vec{a}$, [/mm] inklusive Vorzeichen), also

[mm]\vektor{1 \\ 1 \\ 1}*\bruch{1}{3}*\vektor{1 \\ 2 \\ 2}=\vektor{1 \\ 1 \\ 1}*\pmat{1/3\\2/3\\2/3}=\frac{5}{3}[/mm]

Aber es ist doch ganz klar, dass

[mm]\vektor{1 \\ 1 \\ 1}*\bruch{1}{3}*\vektor{1 \\ 2 \\ 2}\neq 1[/mm]

Ich denke, darüber sind wir uns im Grunde einig: nur stellt sich die Frage, weshalb Du dennoch weiterhin hartnäckig behauptest, dass

[mm]\vektor{1 \\ 1 \\ 1}*\bruch{1}{3}*\vektor{1 \\ 2 \\ 2}= 1[/mm]

sei! Schreib doch auf der rechten Seite eines Gleichheitszeichen nach der Berechnung der linken Seite einfach das Ergebnis dieser Berechung hin - und nicht irgend etwas anderes, das aus irgendwelchen anderen, nicht explizit spezifizierten Rechenschritten resultiert.

> aber den betrag eines vektors rechne ich mit
> [mm]|\vec{a}|=\wurzel{a_1^2+a_2^2+a_3^2}[/mm]
>  
> somit wäre
> [mm]|\vec{b}|_{\vec{a}}=\wurzel{(\bruch{1}{3})^2+(\bruch{2}{3})^2+(\bruch{2}{3})^2}=1[/mm]

Was Du hier berechnest ist in Wahrheit [mm] $|\vec{a}_0|=\left|\frac{\vec{a}}{|\vec{a}|}\right|=\frac{|\vec{a}|}{|\vec{a}|}=1$, [/mm] eine Trivialität, die mit dem Vektor [mm] $\vec{b}$ [/mm] und seiner orthogonalen Projektion auf die Richtung von [mm] $\vec{a}$ [/mm] überhaupt nichts zu tun hat.

Ich glaube, dass die Schreibweise [mm] $|\vec{b}|_{\vec{a}}$ [/mm] für das, was Du laut Aufgabenstellung berechnen sollst, falsch ist. Entweder berechnest Du wie oben [mm] $b_{\vec{a}}$, [/mm] ergibt $5/3$. Oder Du berechnest [mm] $\vec{b}_{\vec{a}}=\frac{5}{3}\vec{a}_0$. [/mm]


Bezug
                                
Bezug
Spatprodukt, Vektorprodukt (2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:17 Sa 02.08.2008
Autor: BlubbBlubb

ah gut ich versteh jetzt, ich war nur vollkommen durcheinander weil da stand ja [mm] |\vec{b}| [/mm] und ich dann immer daran denken musste wie sich der betrag eines vektors ergibt,  aber wenn man die formel ja weiter verfolg dann steht da das man zwei vektoren miteinander multipliziert also ein skalarprodukt erhält. sorry, muss das bei mir erst alles noch vernünftig einordnen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]