matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenSpannungsverteilung in Scheibe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Spannungsverteilung in Scheibe
Spannungsverteilung in Scheibe < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spannungsverteilung in Scheibe: Problembeschreibung
Status: (Frage) überfällig Status 
Datum: 15:27 Di 27.10.2009
Autor: hagger

Hallo.
Ich habe eine Frage, die im Zusammenhang mit der Berechnung der Spannungsverteilung in einer isotropen Scheibe steht (Ich will innerhalb meiner Diplomarbeit unter anderem so eine analytische Berechnung durchführen).


Nach Lekhnitskii bzw. De Jong kann die Spannung in einer isotropen Scheibe mit Loch (Radius=R) - beispielsweise in x-Richtung bestimmt werden durch


[mm] \begin{equation} \sigma_x = 2 Re(\mu_1^2 \varphi'(z_1) + \mu_2^2 \psi'(z_2)) \quad . \end{equation} [/mm]

[mm] \medskip [/mm]
[mm] ($\varphi(z_1)$ [/mm] und [mm] $\psi(z_2)$ [/mm] sind von [mm] $\zeta$ [/mm] abhängige Funktionen)

Die relevanten  Variablen lassen sich wie folgt berechnen:

[mm] \begin{equation} z_k = x + \mu_k \cdot y \qquad k=1,2 \end{equation} [/mm]

[mm] \medskip [/mm]
[mm] $\mu_1$ [/mm] und [mm] $\mu_2$ [/mm] werden definiert durch

[mm] \begin{equation} \mu_1 = \sqrt{\frac{r-a}{2}} + \mathrm i \cdot \sqrt{\frac{r+a}{2}} \end{equation} [/mm]

[mm] \begin{equation} \mu_2 = - \sqrt{\frac{r-a}{2}} + \mathrm i \cdot \sqrt{\frac{r+a}{2}} \end{equation} [/mm]

[mm] \medskip [/mm]
$r$ und $a$ sind reele Zahlen (Berechnen sich aus Einträgen der Nachgiebigkeitsmatrix des Werkstoffs).

[mm] \medskip [/mm]
Es wird nun eine Koordinatentransformation in die komplexe Ebene (Konforme Abbildung) in folgender Form eingeführt (siehe auch Abbildung):

[mm] \begin{equation} \zeta_k = \frac{z_k \pm \sqrt{z_k^2-R^2(1+\mu_k^2)}}{R(1-\mathrm i \cdot \mu_k)} \qquad k=1,2 \label{prob} \end{equation} [/mm]

[mm] \medskip [/mm]
Obige Gleichung stellt das Problem dar: Was entscheidet, ob der Zähler des Bruchs von [mm] $\zeta_k$ ($\displaystyle \pm \sqrt{z_k^2-R^2(1+\mu_k^2)}$) [/mm] mit einer positiven oder negativen Wurzel versehen wird?

[mm] \medskip [/mm]
Im Verlauf des Berechnungsgangs kann nur eine Lösung von [mm] $\zeta_k$ [/mm] weiterverwendet werden (Fallabhängig - warscheinlich je nach x- und y-Koordinate des betrachteten Punktes auf der Scheibe).

Die Funktion unter der Wurzel [mm] $\displaystyle z_k^2-R^2(1+\mu_k^2)$ [/mm] besitzt eine Unstetigkeit - eventuell hat es damit etwas zu tun.

Leider bin ich auch nach mehrtägigem Probieren und Transformieren zu keiner Lösung gelangt...

In der Literatur wurde immer nur die Formel für [mm] $\zeta_k$ [/mm] in genannter Form angegeben, ohne näher darauf einzugehen.

Ich würde mich sehr freuen, wenn mir jemand weiterhelfen könnte!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Spannungsverteilung in Scheibe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 11.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]