matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenSpan, Aufspann, Spann
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Span, Aufspann, Spann
Span, Aufspann, Spann < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Span, Aufspann, Spann: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:47 Fr 12.02.2010
Autor: Reen1205

Aufgabe
Bestimmen Sie zwei Basen von [mm] U1 = span(\vec a_1; \vec a_2;\vec a_3;\vec a_4)[/mm]
[mm] \vec a_1 = \begin{pmatrix}1\\2\\1\\0\end{pmatrix}, \vec a_2 = \begin{pmatrix}2\\1\\-1\\1\end{pmatrix},\vec a_3 = \begin{pmatrix}-3\\0\\3\\-2\end{pmatrix},\vec a_4 = \begin{pmatrix}1\\-1\\-2\\1\end{pmatrix}[/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Wenn ich die jetzt "aufspanne" (ich weiß nciht, ob man die Aktion so nennt) bekomme ich die Matrix [mm] \begin{pmatrix}1 & 2 & 1 & 0\\2 & 1 & -1 & 1\\-2 & 1 & -1 & 1\\ -3 & 0 & 3 & -2 \\1 & -1 & -2 & 1\end{pmatrix}[/mm]
Jenes löse ich jetzt auf und erhalte dann als Lösung [mm]\vec x = s\begin{pmatrix}-\frac{2}{3}\\\frac{1}{3}\\0\\1\end{pmatrix} [/mm]

Sind dann hiermit 2 Basen beispielsweise -->[mm] \begin{pmatrix}-2\\1\\0\\3\end{pmatrix}[/mm] und[mm]\begin{pmatrix}-4\\2\\0\\6\end{pmatrix}[/mm]?

        
Bezug
Span, Aufspann, Spann: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Fr 12.02.2010
Autor: kalkulator

sorry dass das so lange gedauert hat,

Hatte entweder technische Probeleme oder war zu doof, das Mitteilungsfenster wieder zu finden, in dem ich diese Antwort tippe...

Ohne die Aufgabe tiefergehend betrachtet zu haben: Die vier Vektoren können nicht nur
eine einzige Dimension aufspannen, also kann als Lösung nicht nur das Vielfache eines einzigen Vektors herauskommen.
Wenn nur das Vielfache eines Vektors die Lösung bilden würde, so wären alle in der Aufgabe gegebenen Vektoren paarweise linear abhängig, d.h. alle nur Vielfache aller anderen. das ist offensichtlich nicht so. als Lösungsansatz ist sicher die Frage nach linearer Abhängigkeit zu stellen.



Bezug
                
Bezug
Span, Aufspann, Spann: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Fr 12.02.2010
Autor: Reen1205

Habe gerade herausgefunden, dass ich mich verrechnet habe.

Lösung der Matrix ist [mm]\begin{pmatrix}1 & 2 & 1 & 0\\0 & -3 & -3 & 1\\ 0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{pmatrix}[/mm]

So und nun ist eine Basis [mm] \{\begin{pmatrix}1\\2\\1\\0\end{pmatrix}[/mm] und [mm]\begin{pmatrix}0\\-3\\-3\\1\end{pmatrix}\}[/mm]

Kann jetzt eine weitere auch [mm] \{\begin{pmatrix}2\\4\\2\\0\end{pmatrix}[/mm] und [mm]\begin{pmatrix}0\\3\\3\\-1\end{pmatrix}\}[/mm] sein?

Bezug
                        
Bezug
Span, Aufspann, Spann: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Fr 12.02.2010
Autor: kalkulator


> Habe gerade herausgefunden, dass ich mich verrechnet habe.
>  
> Lösung der Matrix ist [mm]\begin{pmatrix}1 & 2 & 1 & 0\\0 & -3 & -3 & 1\\ 0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{pmatrix}[/mm]
>  
> So und nun ist eine Basis
> [mm]\{\begin{pmatrix}1\\2\\1\\0\end{pmatrix}[/mm] und
> [mm]\begin{pmatrix}0\\-3\\-3\\1\end{pmatrix}\}[/mm]
>  
> Kann jetzt eine weitere auch
> [mm]\{\begin{pmatrix}2\\4\\2\\0\end{pmatrix}[/mm] und
> [mm]\begin{pmatrix}0\\3\\3\\-1\end{pmatrix}\}[/mm] sein?

Also bei mir bleiben nach Anwendung des Gauss- Algorithmus drei linear unabhängige Vektoren als Basis übrig. Die zwei von Dir angegebenen sind auch dabei. Sobald Du eine Basis $u,v,w$ hast, ist natürlich auch jede andere Zusammenstellung $k_1u,k_2v,k_3w$, [mm] $k_i\in \mathbbm [/mm] R , [mm] k_i\neq [/mm] 0$, [mm] $i\in\{1,2,3\}$ [/mm]
eine Basis.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]