matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeSpaltenraum (Bild)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Spaltenraum (Bild)
Spaltenraum (Bild) < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spaltenraum (Bild): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Sa 31.10.2009
Autor: itse

Aufgabe
Sei A = [mm] \begin{bmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{bmatrix} [/mm] und b = [mm] \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} [/mm]

Beschreibe den Spaltenraum von A auf zwei verschiedene Weisen, einmal mit Hilfe der Pivot-Spalten, einmal mit Hilfe des Lösbarkeitsbedingung.

Hallo,

Um auf die Pivot-Spalten zu kommen, forme ich die Ausgansmatrix in die Zeilenstufenform um und erhalte dabei auch gleich die Lösbarkeitsbedingung:

[mm] \begin{bmatrix} 2 & 4 & 6 & 4 & b_1 \\ 2 & 5 & 7 & 6 & b_2 \\ 2 & 3 & 5 & 2 & b_3 \end{bmatrix} [/mm] =  [mm] \begin{bmatrix} 2 & 4 & 6 & 4 & b_1 \\ 0 & 1 & 1 & 2 & b_2 - b_1 \\ 0 & -1 & -1 & -2 & b_3 - b_1 \end{bmatrix} [/mm] = [mm] \begin{bmatrix} 2 & 4 & 6 & 4 & b_1 \\ 0 & 1 & 1 & 2 & b_2 - b_1 \\ 0 & 0 & 0 & 0 & b_3 - 2b_1 + b_2 \end{bmatrix} [/mm]


Wenn also [mm] b_3 [/mm] - [mm] 2b_1 [/mm] + [mm] b_2 [/mm] = 0 ist, dann ist das System lösbar.

Pivot-Spalten:

Der Spaltenraum von C(A) = [mm] \left( c \cdot{} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + d \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} | c,d \in \IR \right) [/mm]

Lösbarkeitsbedingung:


[mm] \begin{bmatrix} -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} [/mm] = 0

Somit ist das Pivotelement -2 und die freien Variablen sind [mm] x_2 [/mm] und [mm] x_3, [/mm] somit ergibt sich für den Spaltenraum:

C(A) = [mm] \left( s \cdot{} \begin{bmatrix} \bruch{1}{2} \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} \bruch{1}{2} \\ 0 \\ 1 \end{bmatrix} | s,t \in \IR \right) [/mm]


Die beiden Spaltenräume müsste doch beide gleich sein, jede Matrix kann ja nur einen solchen Unterraum haben. Sind diese gleich oder stimmt meine Lösung nicht?

Gruß
itse

        
Bezug
Spaltenraum (Bild): Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Sa 31.10.2009
Autor: angela.h.b.


> Sei A = [mm]\begin{bmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{bmatrix}[/mm]
> und b = [mm]\begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}[/mm]
>  
> Beschreibe den Spaltenraum von A auf zwei verschiedene
> Weisen, einmal mit Hilfe der Pivot-Spalten, einmal mit
> Hilfe des Lösbarkeitsbedingung.

>  Hallo,
>  
> Um auf die Pivot-Spalten zu kommen, forme ich die
> Ausgansmatrix in die Zeilenstufenform um und erhalte dabei
> auch gleich die Lösbarkeitsbedingung:
>  
> [mm]\begin{bmatrix} 2 & 4 & 6 & 4 & b_1 \\ 2 & 5 & 7 & 6 & b_2 \\ 2 & 3 & 5 & 2 & b_3 \end{bmatrix}[/mm]
> =  [mm]\begin{bmatrix} 2 & 4 & 6 & 4 & b_1 \\ 0 & 1 & 1 & 2 & b_2 - b_1 \\ 0 & -1 & -1 & -2 & b_3 - b_1 \end{bmatrix}[/mm]
> = [mm]\begin{bmatrix} 2 & 4 & 6 & 4 & b_1 \\ 0 & 1 & 1 & 2 & b_2 - b_1 \\ 0 & 0 & 0 & 0 & b_3 - 2b_1 + b_2 \end{bmatrix}[/mm]
>  
>
> Wenn also [mm]b_3[/mm] - [mm]2b_1[/mm] + [mm]b_2[/mm] = 0 ist, dann ist das System
> lösbar.

Ja.

>  
> Pivot-Spalten:
>  
> Der Spaltenraum von C(A) = [mm]\left( c \cdot{} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + d \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} | c,d \in \IR \right)[/mm]

Das ist nicht richtig. Du hast die Pivotelemente in der 1. und 2. Spalte. Damit sind Deine Pivotspalten die 1. und 2. Spalte der ursprünglichen Matrix.

Daß Deine Lösung nicht stimmen kann, siehst Du daran, daß in diesem Raum der Vektor [mm] \vektor{2\\2\\2} [/mm] überhaupt nicht drin wäre.

>  
> Lösbarkeitsbedingung:
>  
>
> [mm]\begin{bmatrix} -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}[/mm]
> = 0
>  
> Somit ist das Pivotelement -2 und die freien Variablen sind
> [mm]x_2[/mm] und [mm]x_3,[/mm] somit ergibt sich für den Spaltenraum:

>  
> C(A) = [mm]\left( s \cdot{} \begin{bmatrix} \bruch{1}{2} \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} \bruch{1}{2} \\ 0 \\ 1 \end{bmatrix} | s,t \in \IR \right)[/mm]

Ja.

>  
>
> Die beiden Spaltenräume müsste doch beide gleich sein,

Ja.

Und jetzt sind sie's auch.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]