matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikSpaltbreite
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Spaltbreite
Spaltbreite < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spaltbreite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Do 27.11.2014
Autor: siggi571

Aufgabe
Ein Spalt wird mit monochromatischem Licht eines HeNe-Lasers (l = 632 nm) beleuchtet.
Man betrachtet das Beugungsbild auf einer l = 8 m entfernten Wand. Der Abstand zwischen
den beiden Minima erster Ordnung beträgt s = 30 cm. Wie groß ist die Spaltbreite b?

Hallo Community,

Leider habe ich dazu nicht die richtige Lösung gefunden. Ich bitte um Aufklärung.

Ansatz:

Mithilfe einer Dreiecksbeziehung kann ich auf den Winkel des Minimas kommen:

[mm] tan\alpha [/mm] =  [mm] \bruch{s}{l} [/mm]

[mm] \alpha [/mm] = 2,1476°


Mithilfe der Minimaformel bei Einzelspalten ergibt sich folgender Ansatz:

sin [mm] \alpha =\bruch{m*\lambda}{b} [/mm]

b= [mm] \bruch{m*\lambda}{sin \alpha} [/mm]


[mm] \lambda [/mm] = 632 nm
m = 1 (1. Ordnung)
[mm] \alpha [/mm] = 2,1476°

b= 16,865 [mm] *10^{-3} [/mm] mm

Laut Lösung kommt raus [mm] 33,73*10^{-3} [/mm] mm


Wo ist hier mein Fehler?

        
Bezug
Spaltbreite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Do 27.11.2014
Autor: siggi571

Passt, habe den Fehler gefunden.
Wer lesen kann...


Bezug
                
Bezug
Spaltbreite: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Do 27.11.2014
Autor: M.Rex


> Passt, habe den Fehler gefunden.
> Wer lesen kann...

>

Super, dann kann die Frage ja geschlossen werden. ;-)

Marius

Bezug
        
Bezug
Spaltbreite: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Do 27.11.2014
Autor: M.Rex

Hallo

> Ein Spalt wird mit monochromatischem Licht eines
> HeNe-Lasers (l = 632 nm) beleuchtet.
> Man betrachtet das Beugungsbild auf einer l = 8 m
> entfernten Wand. Der Abstand zwischen
> den beiden Minima erster Ordnung beträgt s = 30 cm. Wie
> groß ist die Spaltbreite b?
> Hallo Community,

>

> Leider habe ich dazu nicht die richtige Lösung gefunden.
> Ich bitte um Aufklärung.

>

> Ansatz:

>

> Mithilfe einer Dreiecksbeziehung kann ich auf den Winkel
> des Minimas kommen:

>

> [mm]tan\alpha[/mm] = [mm]\bruch{s}{l}[/mm]

>

> [mm]\alpha[/mm] = 2,1476°

>
>

> Mithilfe der Minimaformel bei Einzelspalten ergibt sich
> folgender Ansatz:

>

> sin [mm]\alpha =\bruch{m*\lambda}{b}[/mm]

>

> b= [mm]\bruch{m*\lambda}{sin \alpha}[/mm]

>
>

> [mm]\lambda[/mm] = 632 nm
> m = 1 (1. Ordnung)
> [mm]\alpha[/mm] = 2,1476°

>

> b= 16,865 [mm]*10^{-3}[/mm] mm

>

> Laut Lösung kommt raus [mm]33,73*10^{-3}[/mm] mm

In deinen oben erwähnten Formeln  musst du immer mit der halben Spaltbreite rechnen.
>
>

> Wo ist hier mein Fehler?

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]