matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenSkizzieren eines Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Skizzieren eines Graphen
Skizzieren eines Graphen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skizzieren eines Graphen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:05 Mi 21.01.2009
Autor: DjHighlife

Hi,
ich habe eine Frage bzgl. des Skizzierens einer Funktion.
Ich gehe meist folgendermaßen vor:
1. max. Definitionsmenge; Eventuelle Def.lücken
2. Fkt. welchen Grades
3. Nullstellen

Jetzt hab ich meist eine ungefähre Ahnung, wie meine Fkt. ausschaut.
Jedoch habe ich Probleme beim erkennen von Asymptoten. Ich hab das nicht mehr genau im Kopf, gibt es da einfache und doppelte Asymptoten?
Und heute im Unterricht fiel noch der Begriff positives und negatives Lot. Bin ich mir aber nicht genau sicher.
Und der Begriff Polstelle wurde auch noch erwähnt.
Da ich letztes Jahr leider einen Lehrer hatte, der den Stoff nicht ganz "durchgebracht" hat, kann ich mit den Begriffen nichts anfangen und ich weiß v.a. nicht wie ich sie erkennen kann.

noch mal zusammenfassend:
- Asymptoten (einfach, doppelt?!)
- neg./pos. Lot?!
- Polstellen

ich wäre sehr dankbar, wenn mir jemand kurz diese Eigenschaften erklären könnte, vll auch anhand der Funktion:

[mm]f(x)=\bruch{2x-x^2}{(x-1)^2}[/mm]


leider haben auch Internetrecherchen zu diesen Sachen keine Lößung gebracht.

mfg, Michael


        
Bezug
Skizzieren eines Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Mi 21.01.2009
Autor: Al-Chwarizmi

Hallo,

aufgrund deiner Fragen gehe ich einmal davon aus,
dass es dir um rationale Funktionen geht, also:

1.)   ganzrationale Funktionen  = Polynomfunktionen

2.)   gebrochen rationale Fkt. = [mm] \bruch{Polynomfkt.}{Polynomfkt.} [/mm]

Bei anderen Funktionen (trigonometrische, Exponential-
und Logarithmusfkt. und weitere) braucht man zum Teil
andere Methoden.


> Hi,
>  ich habe eine Frage bzgl. des Skizzierens einer Funktion.
>  Ich gehe meist folgendermaßen vor:
>  1. max. Definitionsmenge; Eventuelle Def.lücken
>  2. Fkt. welchen Grades

das ist bei Polynomen wichtig, bei gebrochenrat. Fkt.
sollte man auf den Zählergrad und den Nennergrad achten

>  3. Nullstellen
>  
> Jetzt hab ich meist eine ungefähre Ahnung, wie meine Fkt.
> ausschaut.
>  Jedoch habe ich Probleme beim erkennen von Asymptoten. Ich
> hab das nicht mehr genau im Kopf, gibt es da einfache und
> doppelte Asymptoten?

Geradlinige (waagrechte oder schräge) Asymptoten können
bei gebrochen rationalen Fkt. auftreten, und zwar:
waagrechte, falls Zählergrad=Nennergrad; schräge As.,
falls Zählergrad=Nennergrad+1. Um die Gleichung der
Asymptote zu bestimmen, benützt man am besten die
MBPolynomdivision.

>  Und heute im Unterricht fiel noch der Begriff positives
> und negatives Lot. Bin ich mir aber nicht genau sicher.

Was damit genau gemeint ist, weiss ich nicht.

>  Und der Begriff Polstelle wurde auch noch erwähnt.

Eine vertikale Asymptote (parallel zur y-Achse) heisst
auch Polgerade. Bei gebrochen-rationalen Fkt. können
solche Asymptoten an solchen Stellen auftreten, wo der
Nenner gleich Null wird. Man muss dann aber überprüfen,
wie sich der Zähler an dieser Stelle verhält. Je nachdem
hat man dann einen Pol mit oder ohne Vorzeichenwechsel
oder eine "hebbare Unstetigkeit". Falls ein Pol vorliegt,
ist der entsprechende x-Wert eine Polstelle.  

> noch mal zusammenfassend:
>  - Asymptoten (einfach, doppelt?!)

Bei gebrochen-rationalen Funktionen sind waagrechte
oder schräge Asymptoten immer "doppelt": sie gelten
für [mm] x\to\infty [/mm] und für [mm] x\to -\infty [/mm] .

>  - neg./pos. Lot?!
>  - Polstellen
>  
> ich wäre sehr dankbar, wenn mir jemand kurz diese
> Eigenschaften erklären könnte, vll auch anhand der
> Funktion:
>  
> [mm]f(x)=\bruch{2x-x^2}{(x-1)^2}[/mm]


Bei diesem Beispiel kann man erkennen, dass es
die (beidseitige) waagrechte Asymptote y=-1 gibt
sowie die Polgerade x=1. An dieser Stelle liegt ein
Pol ohne Vorzeichenwechsel.

Tipp: bestimme die Grenzwerte [mm] \limes_{x\to\infty}f(x) [/mm] sowie [mm] \limes_{x\to -\infty}f(x), [/mm]
[mm] \limes_{x\downarrow 1}f(x) [/mm] und [mm] \limes_{x\uparrow 1}f(x) [/mm] .
(x=1 ist die Nullstelle des Nenners).

LG

Bezug
                
Bezug
Skizzieren eines Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mi 21.01.2009
Autor: DjHighlife

danke für deine Erklärungen!
Das mit den waagerechtenund schrägen Asymptoten, die man dadurch erkennt, wie der jeweilige Zähler bzw. Nennergrad ist habe ich verstanden.
Und dass man auf die Gleichung dieser, in meinem Beispiel, waagerechten Asymptote durch die Polynomdivision kommt hast du ja auch erwähnt. Polynomdivision an sich ist kein Problem, nur wie komme ich in meinem Beispiel auf die "Asymptotengleichung" y=-1?

Die senkrechte Asymptote, also prallel zur Y-Achse ist auch klar, da die Nullstelle des Nenners = 1 ist!

Zeichne ich meine Fkt. hat also die Fkt. folgende Eigenschaften:
- Asymptote parallel zur y-Achse durch x=1
- Asymptote bzw. Polgerade(waagerecht) durch y=-1

stimmt das so?

mfg, Michael

Bezug
                        
Bezug
Skizzieren eines Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mi 21.01.2009
Autor: Al-Chwarizmi

Hallo Michael,


> Polynomdivision an sich ist kein
> Problem, nur wie komme ich in meinem Beispiel auf die
> "Asymptotengleichung" y=-1?

   $\ [mm] f(x)=(-x^2+2x)/(x^2-2x+1)=\underbrace{-1}_{as. Term}+\ \bruch{1}{x^2-2x+1}$ [/mm]
  

> Die senkrechte Asymptote, also parallel zur Y-Achse ist auch
> klar, da die Nullstelle des Nenners = 1 ist!
>  
> Zeichne ich meine Fkt. hat also die Fkt. folgende
> Eigenschaften:
>  - Asymptote parallel zur y-Achse durch x=1   [ok]

        dies ist die Polgerade !
        dabei ist noch nützlich, sich klarzumachen, wie
        sich f in der Umgebung der Polstelle x=1 verhält
        Bestimme deshalb noch die einseitigen Limites

        [mm] $\limes_{x\downarrow 1}F(x)$ [/mm]  und   [mm] $\limes_{x\uparrow 1}F(x)$ [/mm]

>  - Asymptote bzw. Polgerade(waagerecht) durch y=-1


Nebenbemerkung:  diese Funktion weist eine Symmetrie
auf, die man auch noch erwähnen könnte, mit der
Hoffnung auf einen Extrapunkt ...


Gruß    Al-Chw.

Bezug
                        
Bezug
Skizzieren eines Graphen: SchulMatheLexikon
Status: (Antwort) fertig Status 
Datum: 22:18 Mi 21.01.2009
Autor: informix

Hallo DjHighlife,

> danke für deine Erklärungen!
>  Das mit den waagerechtenund schrägen Asymptoten, die man
> dadurch erkennt, wie der jeweilige Zähler bzw. Nennergrad
> ist habe ich verstanden.
>  Und dass man auf die Gleichung dieser, in meinem Beispiel,
> waagerechten Asymptote durch die Polynomdivision kommt hast
> du ja auch erwähnt. Polynomdivision an sich ist kein
> Problem, nur wie komme ich in meinem Beispiel auf die
> "Asymptotengleichung" y=-1?
>  
> Die senkrechte Asymptote, also prallel zur Y-Achse ist auch
> klar, da die Nullstelle des Nenners = 1 ist!
>  
> Zeichne ich meine Fkt. hat also die Fkt. folgende
> Eigenschaften:
>  - Asymptote parallel zur y-Achse durch x=1
>  - Asymptote bzw. Polgerade(waagerecht) durch y=-1
>  
> stimmt das so?
>  

[guckstduhier] MBAsymptote oder MBNullstelle in unserem MBSchulMatheLexikon


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]