matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSkizzieren Sie den Graphen...
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Skizzieren Sie den Graphen...
Skizzieren Sie den Graphen... < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skizzieren Sie den Graphen...: Frage
Status: (Frage) beantwortet Status 
Datum: 16:50 Do 02.06.2005
Autor: matthes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Die Aufgabe ist:

Skizzieren Sie den Graphen einer Funktion, der den folgenden Bedingungen genügt:


-Genau ein Wendepunkt, kein Extremum
-...Drei Wendepunkte, kein Extrempunkt
-Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei Wendepunkte
-Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte

(alles mit Funktionsvorschrift)

Fragen:

1. Extremum = Extrempunkt?

2. Wie geht man an die Aufgaben ran, wenn man nicht alle Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm] y=x^3 [/mm] "genau ein Wendepunkt, kein Extremum" hat)

Ein Prinzip bzw. eine Möglichkeit wäre gut, die man anwenden kann, um einen Graphen mit bestimmten Bedingungen herauszufinden.


Danke
    



        
Bezug
Skizzieren Sie den Graphen...: Idee
Status: (Antwort) fertig Status 
Datum: 17:07 Do 02.06.2005
Autor: Bastiane

Hallo!
[willkommenmr]

> Die Aufgabe ist:
>  
> Skizzieren Sie den Graphen einer Funktion, der den
> folgenden Bedingungen genügt:
>  
>
> -Genau ein Wendepunkt, kein Extremum
>  -...Drei Wendepunkte, kein Extrempunkt
>  -Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei
> Wendepunkte
>  -Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte
>  
> (alles mit Funktionsvorschrift)
>  
> Fragen:
>
> 1. Extremum = Extrempunkt?

[daumenhoch] - also entweder ein Maximum oder ein Minimum (auch Hochpunkt und Tiefpunkt genannt ;-))
  

> 2. Wie geht man an die Aufgaben ran, wenn man nicht alle
> Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm]y=x^3[/mm]
> "genau ein Wendepunkt, kein Extremum" hat)
>  
> Ein Prinzip bzw. eine Möglichkeit wäre gut, die man
> anwenden kann, um einen Graphen mit bestimmten Bedingungen
> herauszufinden.

Mmh - also, ich glaube, so etwas musste ich noch nie machen. Aber ich würde sagen, dass du es genau andersrum probieren kannst, wie wenn du so etwas von einem Graphen bestimmen sollst. Wenn du also jetzt eine Funktion suchst, die z. B. zwei Hochpunkte und einen Tiefpunkt hat, dann nimm eine allgemeine Funktionsvorschrift (den Grad musst du dir dann allerdings schon überlegen...), bilde die Ableitungen (allgemein) davon, und dann machst du quasi eine Steckbriefaufgabe. Also in diesem Fall hier müsste es dann drei Nullstellen für die Ableitung geben (vielleicht fängst du auch einfach damit an), wobei die zweite Ableitung an zwei Stellen <0 sein muss (für die Hochpunkte) und an einer Stelle >0 (für den Tiefpunkt).
Verstehst du, was ich meine?

Keine Ahnung, ob es da noch ne andere Möglichkeit gibt...

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Skizzieren Sie den Graphen...: MatheBank
Status: (Antwort) fertig Status 
Datum: 18:11 Do 02.06.2005
Autor: informix

Hallo matthes,
[willkommenmr]
Wir freuen uns stets über eine freundliche Begrüßung, du auch?

> Die Aufgabe ist:
>  
> Skizzieren Sie den Graphen einer Funktion, der den
> folgenden Bedingungen genügt:
>  
>
> -Genau ein Wendepunkt, kein Extremum
>  -...Drei Wendepunkte, kein Extrempunkt
>  -Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei
> Wendepunkte
>  -Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte
>  
> (alles mit Funktionsvorschrift)
>  
> Fragen:
>
> 1. Extremum = Extrempunkt?

"jein": mit Maximum, Minimum, Extremum bezeichnet man die extremen Funktionswerte,
Hoch-, Tief- und Extrempunkte sind dann die zugehörigen Punkte des Graphen!

>  
> 2. Wie geht man an die Aufgaben ran, wenn man nicht alle
> Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm]y=x^3[/mm]
> "genau ein Wendepunkt, kein Extremum" hat)
>  

Es handelt sich sicherlich um MBganzrationale MBFunktionen, die du beschreiben sollst.
Dazu solltest du den Zusammenhang zwischen dem Grad einer ganz-rat. Funktion und der Anzahl der Nullstellen, Extremstellen und Wendestellen kennen:
eine Funktion n-ten Grades hat
* höchstens n Nullstellen, n-1 Extremstellen, n-2 Wendestellen,
* zwischen zwei (benachbarten) Nullstellen mind. eine Extremstelle,
* zwischen zwei (benachbarten) Extremstellen einen Wendepunkt.
Wahrscheinlich kann man noch mehr solcher "Regeln" aufstellen, forsche selbst mal danach.

Ausgehend von den Nullstellen kannst du dir dann selbst Funktionen basteln, die die gewünschten Eigenschaften haben:
* eine Wendestelle, keine Extremstelle: $f(x) = [mm] ax^n$ [/mm] mit n ungerade;
* drei Wendestellen, keine Extremstelle:
f''(x) muss drei Nullstellen haben, aber f'(x) muss [mm] \ne0 [/mm] sein [mm] \Rightarrow [/mm] f ist also mind. vom Grad 5;
f'(x) darf nie 0 werden, ist also durchgehend positiv oder negativ.

Du merkst schon, jetzt fange ich auch an zu schwimmen; eine "ordentliche" Regel ist mir auch nicht bekannt.

Man muss schon mit den verschiedenen Eigenschaften der Funktionen "spielen". [sorry]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]