matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenSkalenerträge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Skalenerträge
Skalenerträge < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalenerträge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Fr 01.07.2016
Autor: Mathics

Aufgabe
Betrachten Sie die Funktion [mm] f(x_{1}, x_{2}) [/mm] = [mm] A(x_{1} [/mm] + [mm] 1)^{c}*(x_{2})^{d} [/mm] mit Parametern A>0, c>0 und d>0.

Zeigen Sie, dass f abnehmende Skalenerträge hat, wenn c+d [mm] \le [/mm]

Liebes Forum,

abnehmende Skalenerträge sind definiert als:

[mm] t*(f(x_{1}, x_{2})) [/mm] > [mm] f(t*x_{1}, t*x_{2}) [/mm]

mit t>1

Die Idee ist es erst [mm] f(t*x_{1}, t*x_{2}) [/mm] zu definieren und es durch Umformung auf eine Form ähnlich zu [mm] t*(f(x_{1}, x_{2})) [/mm]  um anschließend die obige Bedingung zu überprüfen.

In unserer Lösung wurde folgendes geschrieben:

[mm] f(t*x_{1}, t*x_{2}) [/mm] = [mm] A(t*x_{1} [/mm] + [mm] 1)^{c}*(t* x_{2})^{d} [/mm] < [mm] A(t*x_{1} [/mm] + t [mm] )^{c}*(t* x_{2})^{d} [/mm] (da t>1)

= [mm] A*t^{c}*(x_{1} [/mm] + [mm] 1)^{c}*t^{d}*x_{2}^{d} [/mm]

= [mm] t^{c+d}*A(x_{1} [/mm] + [mm] 1)^{c}*(x_{2})^{d} [/mm]

=  [mm] t^{c+d}*(f(x_{1}, x_{2})) \le t*(f(x_{1}, x_{2})) [/mm]  , da c+d [mm] \le [/mm] 1

Da also [mm] t*(f(x_{1}, x_{2})) [/mm] > [mm] f(t*x_{1}, t*x_{2}) [/mm] handelt es sich um abnehmende Skalenerträge.


Ich verstehe leider nicht wieso man das dickgedruckte t einfach einsetzen kann bei

[mm] f(t*x_{1}, t*x_{2}) [/mm] = [mm] A(t*x_{1} [/mm] + [mm] 1)^{c}*(t* x_{2})^{d} [/mm] < [mm] A(t*x_{1} [/mm] + t [mm] )^{c}*(t* x_{2})^{d} [/mm] (da t>1)

und dann mit der Funktion rechts von der Ungleichung weiterrechnet.

Meine Idee für einen Erklärungsansatz wäre: Man kann [mm] f(t*x_{1}, t*x_{2}) [/mm] = [mm] A(t*x_{1} [/mm] + [mm] 1)^{c}*(t* x_{2})^{d} [/mm] nicht auf eine Form ähnlich zu [mm] t*(f(x_{1}, x_{2})) [/mm] bringen. Deshalb bedient man sich einer "Ersatz"-Funktion [mm] A(t*x_{1} [/mm] + t [mm] )^{c}*(t* x_{2})^{d}, [/mm] die größer als die "originale" Funktion ist. Wenn die "Ersatzunktion" jetzt kleiner als [mm] t*(f(x_{1}, x_{2})), [/mm] dann ist die "originale" Funktion erst recht kleiner, sodass wir die Bedingung für abnehmede Skalenerträge erfüllt haben.

Was meint ihr?


LG

Mathics

        
Bezug
Skalenerträge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Fr 01.07.2016
Autor: fred97


> Betrachten Sie die Funktion [mm]f(x_{1}, x_{2})[/mm] = [mm]A(x_{1}[/mm] +
> [mm]1)^{c}*(x_{2})^{d}[/mm] mit Parametern A>0, c>0 und d>0.
>  
> Zeigen Sie, dass f abnehmende Skalenerträge hat, wenn c+d
> [mm]\le[/mm]
>  Liebes Forum,
>  
> abnehmende Skalenerträge sind definiert als:
>  
> [mm]t*(f(x_{1}, x_{2}))[/mm] > [mm]f(t*x_{1}, t*x_{2})[/mm]
>
> mit t>1
>  
> Die Idee ist es erst [mm]f(t*x_{1}, t*x_{2})[/mm] zu definieren und
> es durch Umformung auf eine Form ähnlich zu [mm]t*(f(x_{1}, x_{2}))[/mm]
>  um anschließend die obige Bedingung zu überprüfen.
>  
> In unserer Lösung wurde folgendes geschrieben:
>  
> [mm]f(t*x_{1}, t*x_{2})[/mm] = [mm]A(t*x_{1}[/mm] + [mm]1)^{c}*(t* x_{2})^{d}[/mm] <
> [mm]A(t*x_{1}[/mm] + t [mm])^{c}*(t* x_{2})^{d}[/mm] (da t>1)
>  
> = [mm]A*t^{c}*(x_{1}[/mm] + [mm]1)^{c}*t^{d}*x_{2}^{d}[/mm]
>  
> = [mm]t^{c+d}*A(x_{1}[/mm] + [mm]1)^{c}*(x_{2})^{d}[/mm]
>  
> =  [mm]t^{c+d}*(f(x_{1}, x_{2})) \le t*(f(x_{1}, x_{2}))[/mm]  , da
> c+d [mm]\le[/mm] 1
>  
> Da also [mm]t*(f(x_{1}, x_{2}))[/mm] > [mm]f(t*x_{1}, t*x_{2})[/mm] handelt
> es sich um abnehmende Skalenerträge.
>  
>
> Ich verstehe leider nicht wieso man das dickgedruckte t
> einfach einsetzen kann bei
>  
> [mm]f(t*x_{1}, t*x_{2})[/mm] = [mm]A(t*x_{1}[/mm] + [mm]1)^{c}*(t* x_{2})^{d}[/mm] <
> [mm]A(t*x_{1}[/mm] + t [mm])^{c}*(t* x_{2})^{d}[/mm] (da t>1)
>  
> und dann mit der Funktion rechts von der Ungleichung
> weiterrechnet.
>  
> Meine Idee für einen Erklärungsansatz wäre: Man kann
> [mm]f(t*x_{1}, t*x_{2})[/mm] = [mm]A(t*x_{1}[/mm] + [mm]1)^{c}*(t* x_{2})^{d}[/mm]
> nicht auf eine Form ähnlich zu [mm]t*(f(x_{1}, x_{2}))[/mm]
> bringen. Deshalb bedient man sich einer "Ersatz"-Funktion
> [mm]A(t*x_{1}[/mm] + t [mm])^{c}*(t* x_{2})^{d},[/mm] die größer als die
> "originale" Funktion ist. Wenn die "Ersatzunktion" jetzt
> kleiner als [mm]t*(f(x_{1}, x_{2})),[/mm] dann ist die "originale"
> Funktion erst recht kleiner, sodass wir die Bedingung für
> abnehmede Skalenerträge erfüllt haben.
>  
> Was meint ihr?

Ja, genau so ist das.

FRED

>
>
> LG
>
> Mathics


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]