matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteSkalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt
Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Parallelogrammgleichung
Status: (Frage) beantwortet Status 
Datum: 10:53 So 26.11.2006
Autor: clwoe

Aufgabe
Zeigen sie das die Norm [mm] \parallel [/mm] x [mm] \parallel=|x_{1}|+|x_{2}| [/mm] im [mm] \IR^{n} [/mm] für [mm] n\ge [/mm] 2 nicht von einem Skalarprodukt erzeugt ist.

Hallo,

wenn die Norm also von einem Skalarprodukt erzeugt ist, muss ich nur überprüfen, ob die so definierte Norm die Parallelogrammgleichung erfüllt. Diese lautet: [mm] \parallel [/mm] x+y [mm] \parallel^{2}+ \parallel [/mm] x-y [mm] \parallel^{2}=2(\parallel [/mm] x [mm] \parallel^{2}+\parallel [/mm] y [mm] \parallel^{2}). [/mm] Ich zeige dies für n=2 und mache dann Induktion. Und genau da liegt mein Problem, irgendwie finde ich nicht den richtigen Weg auch wenn es eigentlich ganz einfach erscheint.

Die Norm ist folgendermaßen definiert. [mm] \parallel [/mm] x [mm] \parallel^{2}=x.x, [/mm] also die Norm zum Quadrat ist das Skalarprodukt des zugehörigen Vektors. Wenn nun meine Norm wie oben definiert ist, schreibe ich:
[mm] (|x_{1}|+|x_{2}|)^{2}+ [/mm] ( [mm] |x_{1}-x_{2}|)^{2}=|x_{1}|^{2}+2|x_{1}||x_{2}|+|x_{2}| ^{2}+|x_{1}|^{2}-2|x_{1}||x_{2}|+|x_{2}| ^{2}=2(|x_{1}|^{2}+|x_{2}|^{2}) [/mm]

Somit ist die Parallelogrammgleichung erfüllt auch für die so definierte Norm, also muss ich wohl irgendetwas falsch gemacht haben, aber was.

Vielleicht kann mal jemand drüber schauen, dieses Problem ist irgendwie so einfach, aber irgendwie auch nicht.

Gruß,
clwoe



        
Bezug
Skalarprodukt: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 So 26.11.2006
Autor: clwoe

Hallo,

kann mir hier denn niemand helfen???
Ist die Aufgabe wirklich so schwierig?

Ich habe schon alles probiert, aber die Parallelogrammgleichung ist bei mir immer wieder erfüllt, also genau das Gegenteil von dem was ich zu zeigen habe.

Ich habe einfach keine Ahnung wieso???

Ich brauche bitte eine Antwort!

Gruß,
clwoe


Bezug
        
Bezug
Skalarprodukt: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 So 26.11.2006
Autor: clwoe

Hallo nochmal,

ist denn niemand da der diese Aufgabe nachprüfen kann??? Ich muss sie morgen abgeben und habe langsam keine Ideen mehr, was ich falsch mache!

Gruß,
clwoe


Bezug
        
Bezug
Skalarprodukt: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:43 Mo 27.11.2006
Autor: clwoe

Guten Morgen,

ich wollte nur mal nachfragen, ob jemand eine Idee hätte, was ich bei der Aufgabe falsch gemacht habe.

Gruß,
clwoe


Bezug
        
Bezug
Skalarprodukt: Hmm...
Status: (Antwort) fertig Status 
Datum: 07:58 Mo 27.11.2006
Autor: statler

Guten Morgen Dominic!

> Zeigen sie das die Norm [mm]\parallel[/mm] x
> [mm]\parallel=|x_{1}|+|x_{2}|[/mm] im [mm]\IR^{n}[/mm] für [mm]n\ge[/mm] 2 nicht von
> einem Skalarprodukt erzeugt ist.
>  Hallo,
>  
> wenn die Norm also von einem Skalarprodukt erzeugt ist,
> muss ich nur überprüfen, ob die so definierte Norm die
> Parallelogrammgleichung erfüllt. Diese lautet: [mm]\parallel[/mm]
> x+y [mm]\parallel^{2}+ \parallel[/mm] x-y [mm]\parallel^{2}=2(\parallel[/mm]
> x [mm]\parallel^{2}+\parallel[/mm] y [mm]\parallel^{2}).[/mm]

Ist nicht ||x+y|| = [mm] |x_{1} [/mm] + [mm] y_{1}| [/mm] + [mm] |x_{2} [/mm] + [mm] y_{2}| [/mm] usw. und reicht für eine Widerlegung nicht einfach ein Gegenbeispiel? Ich bin noch nicht voll im Thema und brauche noch etwas Zeit zum Warmdenken ....

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]