matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteSkalarprodukt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt
Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mi 13.11.2024
Autor: Mathemurmel

Aufgabe
Berechnen Sie
[mm] <\vektor{1 \\ 2 \\ 3},\vektor{1 \\ -2 \\ 1}> [/mm] + [mm] <\vektor{-1 \\ 2 \\ -1},\vektor{2 \\ 7 \\ 1}> [/mm]  - [mm] <\vektor{3 \\ -6 \\ 3},\vektor{0 \\ 1 \\ 1}> [/mm] ,

indem Sie nur ein einziges Skalarprodukt ausrechnen.

Als Ergebnis muss herauskommen:  14, ich bekomme aber leider ein anderes Ergebnis heraus und finde meinen Fehler nicht:
= [mm] <\vektor{1 \\ 2 \\ 3},\vektor{1 \\ -2 \\ 1}> [/mm] + [mm] <\vektor{-1 \\ 2 \\ -1},\vektor{2 \\ 7 \\ 1}> [/mm]  + [mm] <(-1)*\vektor{3 \\ -6 \\ 3},\vektor{0 \\ 1 \\ 1}> [/mm]

= [mm] <\vektor{1 \\ 2 \\ 3} [/mm] + [mm] \vektor{-1 \\ 2 \\ -1} [/mm] - [mm] \vektor{3 \\ -6 \\ 3},\vektor{1 \\ -2 \\ 1} [/mm] + [mm] \vektor{2 \\ 7 \\ 1} [/mm] + [mm] \vektor{0 \\ 1 \\ 1}> [/mm]

= [mm] <\vektor{-3 \\ 10 \\ -1},\vektor{3 \\ 6 \\ 3}> [/mm] = -9 + 60 - 3 = 48   statt  14



        
Bezug
Skalarprodukt: Zusammenfassen
Status: (Antwort) fertig Status 
Datum: 15:29 Mi 13.11.2024
Autor: Infinit

Hallo mathemurmel,
ich kann nicht so richtig nachvollziehen, was Du in der vorletzten Zeile gerechnet hast, also habe ich mal von vorne angefangen.
Aus den beiden ersten Skalarproduktion kann man
[mm] \vektor{1 \\ -2 \\ 1} [/mm] rausziehen und dann steht da
[mm] \vektor{1 \\ -2 \\ 1} \cdot \vektor{1 - 2 \\ 2 - 7 \\ 3 -1} [/mm]
Auch das letzte Skalarprodukt lässt sich umschreiben durch
[mm] \vektor{ 3 \\ -6 \\ 3} = 3 \vektor{1 \\ -2 \\ 1} [/mm]
Jetzt kann ich das ganze so zusammenfassen, dass wirklich nur noch ein Skalarprodukt übrig bleibt:
[mm] \vektor{1 \\ -2 \\ 1} \cdot \vektor{ 1 -2 -0 \\ 2 - 7 -3 \\ 3 - 1 - 3} = \vektor{1 \\ -2 \\ 1} \cdot \vektor{-1\\ -8 \\ -1} [/mm] und das gibt wirklich eine 14 als Ergebnis.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]