matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSkalarfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Skalarfeld
Skalarfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Fr 29.06.2012
Autor: testtest

Aufgabe
Durch die [mm] f(x)=c(x^2+y^2) [/mm] , c>0 ist eine Fläche (bzw. ebens Skalarfeld) gegeben. Bestimmen Sie die Konstante c so, dass die maximale steigeung der Funktionn an der Stelle (x,y) = (2,1) den Neigungswinkeö phi= pi/4 aufweist.

In welche Richtung geht  dieser?

Ich weiß nicht genau was zu tun ist.

die Lösung ist [mm] \bruch{\wurzel{5}}{10} [/mm]

Ich habe schon den grad f bestimmt.

grad f = [mm] \vektor{4c \\ 2x } [/mm]

Nun ist es ja auch so, dass grad f * [mm] \vec{a}_{a} [/mm] in die Richtung des stärksten Anstieges zeigt.

Aber ich weis nicht wie ich das mit phi verwende, bzw. die Steiegung ist ja der tan(phi) also = 1

Um hilfe im Ansatz wäre ich sehr dankbar.

        
Bezug
Skalarfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Fr 29.06.2012
Autor: Diophant

Hallo,

deine Funktion ist vom Typ f(x,y) und f(x) ein Tippfehler?

dein Gradient ist schonmal falsch. Man sieht doch der Funktion f unmittelbar an, dass die Komponenten des Gradienten gleich sein müssen.

Um in Abhängigkeit von c den Neigungswinkel auszudrücken, benötigst du jetzt noch die Richtungsableitung im Punkt (2,1), sowie eben das Wissen, dass man unter einer Steigung m den Tangens des Schnittwinkels mit der x-Achse bzw. hier: kit der xy-Ebene meint.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]