matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieSkalare Punktmultiplikation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Skalare Punktmultiplikation
Skalare Punktmultiplikation < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalare Punktmultiplikation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:21 Sa 20.06.2009
Autor: Bob1982

Aufgabe
Berechne den öffentlichen Schlüssel [mm] Q_A=595 \cdot P [/mm] mit P=(278,285) aus [mm] E(F_p) [/mm] mit elliptischer Kurve E: y²=x³+19x+17 und p=1201  

Wie berechne ich (von Hand) am Besten hier den gesuchten öffentlichen Schlüssel ? Ich habe mal etwas von einer angepassten Square and Multiply Variante gelesen, diese kann ich aber nicht so wirklich nachvollziehen und scheint mir auch recht langatmig zu werden, da man wegen [mm] 595_2=1001010011[/mm] ja schon 9 Mal diese Punktverdopplung durchführen müsste.
Bekannt sind mir ferner noch die Formeln für die Berechnung von R=2P=P+P und R=P+Q:

R=2P ---> [mm] x_R=m^2-2x_P[/mm] und [mm]y_R=-y_P+m(x_P-x_R)[/mm]

R=P+Q ---> [mm] x_R=m^2-x_P-x_Q[/mm] und [mm]y_R=-y_P+m(x_P-x_R)[/mm]

Wäre die Methode nach Lenstra eine Alternative bzw was wäre hier als Vorgehensweise für ein solches Problem üblich ?



        
Bezug
Skalare Punktmultiplikation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Mo 22.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Skalare Punktmultiplikation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:50 Mi 24.06.2009
Autor: felixf

Hallo!

> Berechne den öffentlichen Schlüssel [mm]Q_A=595 \cdot P[/mm] mit
> P=(278,285) aus [mm]E(F_p)[/mm] mit elliptischer Kurve E:
> y²=x³+19x+17 und p=1201
> Wie berechne ich (von Hand) am Besten hier den gesuchten
> öffentlichen Schlüssel ? Ich habe mal etwas von einer
> angepassten Square and Multiply Variante gelesen, diese
> kann ich aber nicht so wirklich nachvollziehen und scheint
> mir auch recht langatmig zu werden, da man wegen
> [mm]595_2=1001010011[/mm] ja schon 9 Mal diese Punktverdopplung
> durchführen müsste.

Kennst du die Ordnung von $P$? Dann kannst du eventuell etwas vereinfachen.

> Bekannt sind mir ferner noch die Formeln für die Berechnung
> von R=2P=P+P und R=P+Q:
>  
> R=2P ---> [mm]x_R=m^2-2x_P[/mm] und [mm]y_R=-y_P+m(x_P-x_R)[/mm]
>  
> R=P+Q ---> [mm]x_R=m^2-x_P-x_Q[/mm] und [mm]y_R=-y_P+m(x_P-x_R)[/mm]
>  
> Wäre die Methode nach Lenstra eine Alternative bzw was wäre
> hier als Vorgehensweise für ein solches Problem üblich ?

Was ist fuer dich ``die Methode nach Lenstra''?

Normalerweise verwendet man eine Square-and-Multiply-Methode bzw. eine Optimierung deren (was hier aber wohl nicht viel bringt).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]