matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeSkalare Gleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Skalare Gleichungen
Skalare Gleichungen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalare Gleichungen: Verständnissproblem
Status: (Frage) beantwortet Status 
Datum: 10:13 Do 21.01.2010
Autor: wetangel19

Aufgabe
Beispiel: Zeigen Sie, dass durch die beiden skalaren Gleichungen x=z+5, y=4-2z eine Gerade beschrieben wird. Ermitteln Sie ihren Durchstoßungspunkt mit der y,z-Ebene,sowie einen Richtungsvektor.

Hallo erstmal in diesem Forum!

Ich bin noch ziemlich unerfahren mit solchen Foren aber ich chatte ja auch viel und verspreche mir einiges davon.

Zu meinem Problem:
Auf der im Anhang dargestellten 2.Linearen Gleichungseinheit kommt: [mm] y=14-2\mu [/mm] vor, dessen ich jedoch nicht beipflichte denn.....

y=4-2*pi (weil ich ja z=pi gesetzt habe)

Daher meine Frage: Hat sich der Autor bloß vertippt oder handelt es sich um ein Verständnisproblem auf meiner Seite?

Bitte um HILFE!



Beispiel: Zeigen Sie, dass durch die beiden skalaren Gleichungen x=z+5, y=4-2z eine Gerade beschrieben wird. Ermitteln Sie ihren Durchstoßungspunkt mit der y,z-Ebene,sowie einen Richtungsvektor.

Lösung: Setzt man [mm] z=\lambda,so [/mm] erhält man

x= [mm] 5+\lambda [/mm]          (*)
[mm] y=4-2\lambda [/mm]
[mm] z=\lambda [/mm]

[mm] \vektor{x \\ y\\z}=\vektor{5 \\ 4\\0}+ \lambda \vektor{1 \\ -2\\1} [/mm]

Die so entstandene Vektorgleichung stellt eine Gerade dar die eindeutig definiert ist.

Der Parameter [mm] \lambda [/mm] misst in diesem speziellen Fall den Abstand von der x,y-Ebene.

Wählt man x= [mm] \mu [/mm] als Parameter, so erhält man:

x= [mm] \mu [/mm]
y=??14??-2 [mm] \mu [/mm]    //MEIN HAUPTPROBLEM: WARUM 14 und nicht [mm] 4?\\ [/mm] (**)
z=-5+ [mm] \mu [/mm]

[mm] \vektor{x \\ y\\z}=\vektor{0 \\ 14\\z}+\vektor{1\\ -2\\1} [/mm]

...wieder diese scheussliche 14!

/mu misst jetzt den Abstand von der y,z-Ebene.
(*) und (**) sind zwei völlig gleichwertige verschiedene Vektorgleichungen der selben Geraden.(Aber die 14 stört mich...soweit ich weiss liegt eine parallelität bzw. eine Beziehung der Punkte zur Geraden nur dann vor wenn z.b. P1(=y*)...y=4-2x zu P2(y**)......y=14-2 [mm] \mu [/mm] ein Vielfaches ist und das ist hier nicht der Fall denn:

y=4-2 [mm] \lambda [/mm] und y=14-2 [mm] \mu [/mm] sind doch keine Vielfachen.

Was ist da los?

a) Habe ich ein Verständnissproblem ?
b) Ist meine "Theoretische Kommentation" richtig?

Zum Durchstoßungspunkt:

Den gesuchten Durchstoßungspunkt kann man an der letzten Geragengleichung sofort ablesen: Syz (o/14/-5) bei mir wäre er:

(**)
x= [mm] \mu [/mm]
y=4-2 [mm] \ambda [/mm]
z=-5+ [mm] \mu [/mm]

darraus folgere ich:

[mm] \vektor{x \\ y\\z}=\vektor{0 \\ 4\\-5} [/mm] und nicht  [mm] \vektor{0\\14\\-5} [/mm]

...richtig ??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skalare Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Do 21.01.2010
Autor: angela.h.b.


> Beispiel: Zeigen Sie, dass durch die beiden skalaren
> Gleichungen x=z+5, y=4-2z eine Gerade beschrieben wird.
> Ermitteln Sie ihren Durchstoßungspunkt mit der
> y,z-Ebene,sowie einen Richtungsvektor.

Hallo,

[willkommenmr].

>  
> Lösung: Setzt man [mm]z=\lambda,so[/mm] erhält man

Wir haben ein GS mit 2 Gleichungen und drei Variablen, können also eine Variable frei wählen. In diesem Lösungsvorschlag entscheidet man sich für freie Wahl von z,

daraus ergeben sich x und y:

>  
> x= [mm]5+\lambda[/mm]          (*)
>  [mm]y=4-2\lambda[/mm]
>  [mm]z=\lambda[/mm]

Also haben alle Lösungendes Systems die Gestalt

>  
> [mm]\vektor{x \\ y\\z} =\vektor{5+\lambda \\ 4-2\lambda\\\lambda} > =\vektor{5 \\ 4\\0}+ \lambda \vektor{1 \\ -2\\1}[/mm]
>  
> Die so entstandene Vektorgleichung stellt eine Gerade dar
> die eindeutig definiert ist.

Ja.

>  
> Der Parameter [mm]\lambda[/mm] misst in diesem speziellen Fall den
> Abstand von der x,y-Ebene.

Ja, aber wirklich nur in diesem speziellen Fall.


>  

Jetzt wird - mehr oder weniger aus Spaß - geschaut, ob sich dieselbe Gerade ergibt, wenn man eine andere variable als freie variable nimmt.

> Wählt man x= [mm]\mu[/mm] als Parameter, so erhält man:
>  
> x= [mm]\mu[/mm]

Es ist (1. Gleichung)

z=x-5= [mm] \mu [/mm] - 5

und (2.Gleichung)

[mm] y=4-2z=4-2(\mu [/mm] - [mm] 5)=14-2\mu. [/mm]

Da ist sie, die 14.
Vielleicht gefällt sie Dir nicht, aber sie ist auf völlig legalem Weg entstanden.


>  y=??14??-2 [mm]\mu[/mm]    //MEIN HAUPTPROBLEM: WARUM 14 und nicht
> [mm]4?\\[/mm] (**)
>  z=-5+ [mm]\mu[/mm]
>  
> [mm]\vektor{x \\ y\\z}=\vektor{0 \\ 14\\z}+\vektor{1\\ -2\\1}[/mm]
>  
> ...wieder diese scheussliche 14!

Hier muß es dann heißen:

[mm] \vektor{x\\y\\z}=\vektor{0\\14\\-5}+\mu\vektor{1\\-2\\1} [/mm]

>  
> /mu misst jetzt den Abstand von der y,z-Ebene.

Ja. In diesem speiziellen Fall.


> (*) und (**) sind zwei völlig gleichwertige verschiedene
> Vektorgleichungen der selben Geraden.

Ja.

Woran sehen wir das:

Ihre Richungsvektoren sind parallel.
Hier in Beispiel sind sie sogar gleich, aber das wäre überhaupt nicht erforderlich.

Stützvektor der zweiten geraden liegt auch auf der ersten, denn es ist

[mm] \vektor{0\\14\\-5}= =\vektor{5 \\ 4\\0}+ [/mm] (-5)* [mm] \vektor{1 \\ -2\\1}[/mm], [/mm]

oder anders ausgedruckt: der Differenzvektor der beiden Stützvektoren ist parallel zum Richtungsvektor

Ich hoffe, daß hiermit Dein Problem geklärt ist.


> Zum Durchstoßungspunkt:
>  
> Den gesuchten Durchstoßungspunkt kann man an der letzten
> Geragengleichung sofort ablesen:

Ja, und weil die Geradengleichung so lautet wie in der Dir vorliegenden Lösung, ist der Durchstoßpunkt (0|14|-5)

Gruß v. Angela






Syz (o/14/-5) bei mir

> wäre er:
>  
> (**)
>  x= [mm]\mu[/mm]
>  y=4-2 [mm]\ambda[/mm]
>  z=-5+ [mm]\mu[/mm]
>  
> darraus folgere ich:
>  
> [mm]\vektor{x \\ y\\z}=\vektor{0 \\ 4\\-5}[/mm] und nicht  
> [mm]\vektor{0\\14\\-5}[/mm]
>  
> ...richtig ??
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Skalare Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Do 21.01.2010
Autor: wetangel19

Hey angela.h.b., herzlich willkommen auch an dich!

Also deine Antwort:

1) Schnell_präzise und Modellhaft dargestellt

Ps: ich war da schon auf der Spur aber irgendwie habe ich mich mit dem Richtungsvektor vom [mm] \lambda [/mm] herumgeplagt anstelle das [mm] \mu [/mm] in die Rechnung zu nehmen...Naja meine Lust nach Zahlen :-)

Auf jedenfall bist Du mir eine große Hilfe gewesen!

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]