matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Sinussatz - oder Kosinussatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Sinussatz - oder Kosinussatz
Sinussatz - oder Kosinussatz < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinussatz - oder Kosinussatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Do 09.11.2017
Autor: Dani02

Aufgabe
Zeichne das Dreieck ABC und berechne die fehlenden Seitenlängen und Winkelmaße
a) a=6,0 cm b=5,0 cm c=7,5 cm; b) a=6,0 cm b=7,0 cm c=11,0 cm; c) a=6,4 cm b=4,0 cm [mm] \gamma [/mm] =95,00 ; d) a=6,3 cm  [mm] \alpha [/mm] =68,0  [mm] \gamma [/mm] 82,0 ; e) a=5,8 cm c=4,9 cm [mm] \gamma [/mm] = 48,3 f) b=8,0 cm c= 10,0 cm  sin [mm] \beta [/mm] =0,8

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.Ich kann alle drei gesuchten Größen mit dem Sinussatz oder dem Kosinussatz berechnen. bzw. wenn zwei Winkel angegeben sind den letzten fehlenden berechnen. Allerdings müssen wir bei d) und e) jeweils ein weiteres Dreieck bilden und hier auch drei Größen angeben. Der Winkel der der größten Seite gegenüber liegt wird von 180 Grad abgezogen auf e) 180-62,1=117,9 das wäre [mm] \alpha [/mm] 2. Dann [mm] \beta [/mm] 2 = 180-117,9-48,3=13,8 Grad. und die Seite b2= 1,5 cm. Ich verstehe nicht warum das gemacht werden muss bei diesen beiden Teilaufgaben. Unsere Lehrerin sagt wir müssen selbst erkennen wann wir das machen müssen. Vielen Dank für die Hilfe!

        
Bezug
Sinussatz - oder Kosinussatz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 09.11.2017
Autor: Diophant

Hallo,

> Zeichne das Dreieck ABC und berechne die fehlenden
> Seitenlängen und Winkelmaße
> a) a=6,0 cm b=5,0 cm c=7,5 cm; b) a=6,0 cm b=7,0 cm c=11,0
> cm; c) a=6,4 cm b=4,0 cm [mm]\gamma[/mm] =95,00 ; d) a=6,3 cm
> [mm]\alpha[/mm] =68,0 [mm]\gamma[/mm] 82,0 ; e) a=5,8 cm c=4,9 cm [mm]\gamma[/mm] =
> 48,3 f) b=8,0 cm c= 10,0 cm sin [mm]\beta[/mm] =0,8
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.Ich kann alle drei gesuchten
> Größen mit dem Sinussatz oder dem Kosinussatz berechnen.
> bzw. wenn zwei Winkel angegeben sind den letzten fehlenden
> berechnen. Allerdings müssen wir bei d) und e) jeweils ein
> weiteres Dreieck bilden und hier auch drei Größen
> angeben. Der Winkel der der größten Seite gegenüber
> liegt wird von 180 Grad abgezogen auf e) 180-62,1=117,9 das
> wäre [mm]\alpha[/mm] 2. Dann [mm]\beta[/mm] 2 = 180-117,9-48,3=13,8 Grad.
> und die Seite b2= 1,5 cm. Ich verstehe nicht warum das
> gemacht werden muss bei diesen beiden Teilaufgaben. Unsere
> Lehrerin sagt wir müssen selbst erkennen wann wir das
> machen müssen. Vielen Dank für die Hilfe!

deine Lehrerin hat offensichtlich die Kongruenzsätze SSW bzw. SSw im Sinn (kann sein, dass die bei euch anders notiert werden). In beiden Fällen  sind zwei Seiten gegeben und ein angrenzender Winkel. Im ersten Fall SSW liegt dieser Winkel der längeren der beiden Seiten gegenüber und das Dreieck ist dann durch die drei Angaben eindeutig bestimmt. Im zweiten Fall SSw liegt der Winkel der kürzeren der beiden Seiten gegenüber und für diesen Fall gibt es u.U. zwei nicht kongruente Dreiecke, die zu den angegeben Größen passen.

Nur: in Teilaufgabe d) liegt der Kongruenzsatz WSW vor, so dass das zweite Dreieck bei dieser Aufgabe nicht erforderlich ist. In Teilaufgabe e) allerdings haben wir den Fall SSw, hier musst du zwei Dreiecke berechnen.

Anders sieht es bei der Aufgabe f) aus: hier ist nicht der Winkel [mm] \beta [/mm] gegeben, sondern der Sinus von [mm] \beta. [/mm] Da die Gleichung

[mm]sin(\beta)=0.8[/mm]

(u.a.) die beiden Lösungen

[mm]\beta_1\approx{53.1^{\circ}}\ ;\ \beta_2\approx{126.9^{\circ}}[/mm]

besitzt, musst du hier ebenfalls zwei Dreiecke zeichnen und berechnen.

Insgesamt gibt es bei dieser Art von Aufgaben zwei denkbare Gründe dafür, dass es zwei Lösungen gibt bzw. geben kann:

- es liegt der Kongruenzsatz SSw vor
- ein Winkel ist durch seinen Sinus gegeben.

Überlege dir selbst, weshalb es beim Kosinus wiederum eindeutig wäre!


Gruß, Diophant

Bezug
                
Bezug
Sinussatz - oder Kosinussatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:41 Do 09.11.2017
Autor: Dani02

vielen Dank für die schnelle Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]