matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenSinusbeweise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Sinusbeweise
Sinusbeweise < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinusbeweise: Sinusbeweise im Einheitskreis
Status: (Frage) beantwortet Status 
Datum: 20:02 Mo 11.09.2006
Autor: dth100

Aufgabe
Beschreibe einem Einheitskreis mit dem Mittelpunkt (0;0) in einem koordinatensystem (1LE = 5cm) ein gleichschenkliges Dreieck (Quadrat, regelmäßiges Sechseck, regelmäßiges zehneck) ein.
Beweise dann die Formel sin [mm] \bruch{\pi}{3} [/mm] =  [mm] \bruch{\wurzel{3}}{2} [/mm] (sin [mm] \bruch{\pi}{4} [/mm] = [mm] \bruch{\wurzel{2}}{2} [/mm] ; sin [mm] \bruch{\pi}{5} [/mm] = [mm] \bruch{\wurzel{10 + 2 \wurzel{5}}}{4} [/mm] ;
sin [mm] \bruch{\pi}{10} [/mm] = [mm] \bruch{\wurzel{5} + 1}{4} [/mm]

Hallo, ich hoffe mal ihr könnt mir mit diese, wei ich finde exterem schwierigen Aufgabe weiterhelfen. Also mal beim Dreieck angefangen: allein die Konstruktionen sind ja schon nciht so ganz ohne, für [mm] \pi [/mm] kann man ja auch sagen 180° und da in einem gleichschenkl Dreieck alle Winkel gleich groß sind, also 60°, denk ich mla das das ein Ansatz sein dürfte, aber warum das dann = [mm] \bruch{\wurzel{3}}{2} [/mm] sein soll? keine Ahnung, wenn ichs abmesse stimmt aber vom Verhältnis her

Bei dem 6 Eck würde ich sagen, es ist ein Druckfehler, also entweder es soll ein regelmäßiges 5 Eck rauskommen oder die Formel ist falsch, denn sonst klappt das doch mit dem Winkel nicht oder?

Jaaa, die einzige Formel die mir zu dem ganzen noch einfällt wäre sin =Gegenkathete / Hypothenuse, und bei der Konstruktion waren noch die folgenden Formeln hilfreich:
Zentriwinkel über dem Bogen = 2*Peripheriewinkel über dem selben Bogen
und s(Länge der Sehne) = 2 r sin [mm] \bruch{\alpha}{2} (\alpha [/mm] ist der Zentriwinkel)

Achso, Zentriwinkel ist der Winkel, den die Endpunkte der Sehne auf dem Kreis mit dem Mittelpunkt einschließen.

So, sollte jemand auch nur einen Teil dieser Beweise führen können und das auch noch so, das ichs verstehe :-)), Leute ich wär euch wirklich dankbar

        
Bezug
Sinusbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Mo 11.09.2006
Autor: riwe

hallo,
dann wollen wir mit [mm] \frac{\pi}{3} [/mm] = 60° beginnen. das ist sogar ein gleichSEITIGes dreieck. davon die hälfte ist das dreieck HCB. nun schauen wir uns das dreieck ABC an, das ist ein rechtes, da im halbkreis. dann hast du mit dem höhensatz:
[mm]h^{2}= HC^{2}=AH\cdot HB = \frac{1}{2}\cdot \frac{3}{2} [/mm] und damit [mm]h=\frac{\sqrt{3}}{2}[/mm].
mit dem pythagoras folgt [mm] CB^{2}=h^{2}+HB^{2}=3\rightarrow CB=\sqrt{3}. [/mm]
dann hast du [mm]sin \angle{HCB}= sin\frac{\pi}{3}=\frac{HB}{CB}=\frac{\frac{3}{2}}{\sqrt{3}}= \frac{\sqrt{3}}{2}[/mm]
vielleicht gehts auch einfacher?


[Dateianhang nicht öffentlich]


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Sinusbeweise: ich verstehs nicht :-(
Status: (Frage) beantwortet Status 
Datum: 11:10 Di 12.09.2006
Autor: dth100

Aufgabe
Sorry, hab was durcheinandergebracht, es soll ein gleichSEITIGES Dreieck sein

Also erstmal danke für den Ansatz aber das hab ich irgendwie nicht ganz verstanden :-(
woher weiß ich das AH =1/2 und HB=3/2 ist?

Und wie siehts dann mit den andern Vielecken aus?

Hmm.. Also wäre echt nett wenn jemand nochmal was dazu posten könnte :-)

Bezug
                        
Bezug
Sinusbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Di 12.09.2006
Autor: leduart

Hallo dth
Wenn du in einem gleichsetigen Dreieck die Höhe=Seitenhalbierende=Winkelhalbierende einzeichnest, dann hast du das halbe dreieck, mit einem rechten Winkel. In dem Dreieck gilt [mm] $s^2-(s/2)^2=h^2$ [/mm]
[mm] $h^2=3/4*s^2$ [/mm] und h/s= [mm] sin\pi/3. [/mm] jetzt bau das noch schön in nen Kreis ein; oder nimm das 6Eck, Diagonale d,  die eine Ecke überschlägt,den Radius halbiert , und Sehne mit Länge aus deiner Formel. halbe Sehne, ganzer Radius und halber Radius wieder Pythagoras.
Quadrat, Diagonalen sind Radien=1  Seitenlänge mit pythagoras [mm] $s^2=1^2+1^2$, sin\pi/4=1/s. [/mm]
Beim fünf und 10 Eck sieh mal im Netz unter Formeln und Beweisen zum goldenen Schnitt nach.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]