matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisSingularitäten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Singularitäten
Singularitäten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularitäten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Do 21.05.2009
Autor: johnny11

Aufgabe
Klassifizieren Sie die isolierten Singularitäten der folgenden Funktionen und geben Sie im Falle eines Pols dessen Ordnung an:

a)  [mm] \bruch{1-cos(z)}{sin(z)} [/mm]

b) [mm] \bruch{1}{e^z -1} [/mm]

Bei Aufgabe a)  sind die isolierten Sinularitäten ja [mm] \IZ*\pi. [/mm] Dann habe ich mal mit folgendem Korollar versucht herauszufinden, ob es sich dabei um Polstellen handelt oder nicht:

Die Funktion f holomorph in [mm] D\c [/mm] hat genau dann einen Pol in c, wenn gilt:

[mm] \limes_{z\rightarrow c} [/mm] f(z) = [mm] \infty [/mm]

Mit l'Hopital habe ich folgenden Ausdruck erhalten:

[mm] \limes_{z\rightarrow\ \IZ*\pi} \bruch{sin(z)}{cos(z)} [/mm] = 0

Also handelt es ich bei diesen Singularitäten nicht um Pole. Doch wie kann ich nun weitermachen?

Und wie soll ich bei b) am besten Beginnen? [mm] e^z [/mm] in eine Potenzreihe entwickeln?
Was gibt es denn allgemein für Strategien bei Aufgaben solcher Art?

        
Bezug
Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Do 21.05.2009
Autor: MathePower

Hallo johnny11,

> Klassifizieren Sie die isolierten Singularitäten der
> folgenden Funktionen und geben Sie im Falle eines Pols
> dessen Ordnung an:
>  
> a)  [mm]\bruch{1-cos(z)}{sin(z)}[/mm]
>  
> b) [mm]\bruch{1}{e^z -1}[/mm]
>  
> Bei Aufgabe a)  sind die isolierten Sinularitäten ja
> [mm]\IZ*\pi.[/mm] Dann habe ich mal mit folgendem Korollar versucht
> herauszufinden, ob es sich dabei um Polstellen handelt oder
> nicht:
>  
> Die Funktion f holomorph in [mm]D\c[/mm] hat genau dann einen Pol in
> c, wenn gilt:
>  
> [mm]\limes_{z\rightarrow c}[/mm] f(z) = [mm]\infty[/mm]
>  
> Mit l'Hopital habe ich folgenden Ausdruck erhalten:
>  
> [mm]\limes_{z\rightarrow\ \IZ*\pi} \bruch{sin(z)}{cos(z)}[/mm] = 0
>  
> Also handelt es ich bei diesen Singularitäten nicht um
> Pole. Doch wie kann ich nun weitermachen?


L'Hospital kannst Du hier nur anwenden, wenn auch

[mm]1-\cos\left(z\right)=0[/mm]

ist, und das ist genau dann der Fall, wenn

[mm]z=2*k*\pi, \ k \in \IZ[/mm]

ist.

Deshalb ist auch noch zu untersuchen, welcher Art die Singularität ist,
wenn [mm]z=\left(2*k+1\right)*\pi, \ k \in \IZ[/mm] ist.


>
> Und wie soll ich bei b) am besten Beginnen? [mm]e^z[/mm] in eine
> Potenzreihe entwickeln?
>  Was gibt es denn allgemein für Strategien bei Aufgaben
> solcher Art?


Gruß
MathePower

Bezug
                
Bezug
Singularitäten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Fr 22.05.2009
Autor: johnny11

Hallo

> L'Hospital kannst Du hier nur anwenden, wenn auch
>  
> [mm]1-\cos\left(z\right)=0[/mm]
>  
> ist, und das ist genau dann der Fall, wenn
>  
> [mm]z=2*k*\pi, \ k \in \IZ[/mm]
>  
> ist.

Das heisst also, dass [mm] z=2*k*\pi [/mm] keine Pole sind. Sind es dann hebbare Singularitäten? Oder wie kann ich dies herausfinden?


>  
> Deshalb ist auch noch zu untersuchen, welcher Art die
> Singularität ist,
>  wenn [mm]z=\left(2*k+1\right)*\pi, \ k \in \IZ[/mm] ist.
>  

Wie kann ich denn hierfür vorgehen?
Ich habe eben gerade nicht so eine Ahnung, wie ich bei Aufgaben dieser Art vorgehen muss, wenn man die Singularitäten klassifizieren muss.


Bezug
                        
Bezug
Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Fr 22.05.2009
Autor: fred97

Sei $k [mm] \in \IZ$ [/mm] und [mm] $z_0 [/mm] = k [mm] \pi$ [/mm]


Fall 1: k ist ungerade. Dann ist [mm] $1-cos(z_0) [/mm] = 2$, somit:

                  $ [mm] \bruch{1-cos(z)}{sin(z)} \to \infty$ [/mm]  für $z [mm] \to z_0$ [/mm]

Damit ist [mm] z_0 [/mm] ein Pol.

Fall 2: k  ist gerade. Dann ist [mm] $1-cos(z_0) [/mm] =0$. Die Funktionen $1-cos(z)$ und $sin(z)$ haben somit in [mm] z_0 [/mm] jeweils eine Nullstelle der Ordnung 1. Also gibt es ganze Funktionen f und g  mit:

$ [mm] \bruch{1-cos(z)}{sin(z)}= \bruch{(z-z_0)f(z)}{(z-z_0)g(z)} [/mm] = [mm] \bruch{f(z)}{g(z)}$ [/mm] und [mm] $f(z_0) \not= [/mm] 0 [mm] \not= g(z_0)$. [/mm]

Somit:

             [mm] $\bruch{1-cos(z)}{sin(z)} \to \bruch{f(z_0)}{g(z_0)}$ [/mm]  für $z [mm] \to z_0$ [/mm]


Damit ist [mm] z_0 [/mm] eine hebbare Singularität.




FRED

Bezug
                
Bezug
Singularitäten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Fr 22.05.2009
Autor: SEcki


> L'Hospital kannst Du hier nur anwenden, wenn auch
>  
> [mm]1-\cos\left(z\right)=0[/mm]

Sicher, dass man die Regel im Komplexen anwenden kann? Der Beweis im Rellen benutzt spezielle Eigenschaften der Ableitungen im 1-dimensional rellen. Wenn es geht - kannst du mir eine Beweisquelle nennen?

SEcki

Bezug
        
Bezug
Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Fr 22.05.2009
Autor: fred97

Zu b)

isolierte Singularitäten sind hier:   $2k [mm] \pi [/mm] i$  mit $k [mm] \in \IZ$. [/mm]


Wegen [mm] $e^z [/mm] -1 [mm] \to [/mm] 0$ für $z [mm] \to [/mm] 2k [mm] \pi [/mm] i$ handelt es sich um Pole (1. Ordnung)

FRED

Bezug
                
Bezug
Singularitäten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:42 Fr 22.05.2009
Autor: johnny11

Hallo Fred,
Danke für deine hilfreichen Antworten. Ein bisschen Unklarheit herrscht aber immer noch:

> Wegen [mm]e^z -1 \to 0[/mm] für [mm]z \to 2k \pi i[/mm] handelt es sich um
> Pole (1. Ordnung)

Weshalb weiss ich, dass dies ein Pol erster Ordnung ist. Und wie finde ich die Ordnung des Pols von

[mm] \bruch{1-cos(z)}{sin(z)} [/mm] heraus? Der Pol ist ja bei [mm] z_0 [/mm] = [mm] k*\pi [/mm] für k ungerade. Doch was für eine Ordnung hat dieser Pol?

Und weshalb darf ich überhaupt sagen, dass [mm] \limes_{z\rightarrow\ z_{0}}\bruch{1-cos(z)}{sin(z)} [/mm] = [mm] \infty. [/mm]
[mm] \limes_{z\rightarrow\ z_{0}}\bruch{1-cos(z)}{sin(z)} [/mm] = [mm] "\bruch{2}{0}". [/mm]
Ich kann doch hier nicht einfach daraus schliessen, dass dieser Ausdruck unendlich ist? Oder habe ich das falsch im Kopf?
Analog bei [mm] \limes_{z\rightarrow\ z_{0}}\bruch{1}{e^{z}-1} [/mm] = [mm] "\bruch{1}{0}". [/mm]

Bezug
                        
Bezug
Singularitäten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 So 24.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]