matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisSingularität klassifizieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Singularität klassifizieren
Singularität klassifizieren < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularität klassifizieren: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:14 Mi 08.07.2015
Autor: Calculu

Aufgabe
Klassifiziere die Singularität der folgenden Funktion:
[mm] f(z)=exp(sin(\bruch{1}{z})) [/mm]


Hallo,

ich weiß nicht genau wie ich diese Aufgabe lösen soll.
Die Funktion hat eine Singularität bei [mm] z_{0}=0. [/mm]
Wenn ich nun den Grenzwert bilde: [mm] \limes_{z\rightarrow 0} [/mm] f(z) habe ich ein Problem, da meiner Meinung nach der GW für sin(1/z) schon nicht existiert.
Kann ich dann die Grenzwertbetrachtung zur Klassifizierung der Singularitäten nicht benutzen und muss über die Laurentreihe gehen oder wie mache ich das?
Über einen Tipp würde ich mich sehr freuen.

        
Bezug
Singularität klassifizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mi 08.07.2015
Autor: fred97


> Klassifiziere die Singularität der folgenden Funktion:
>  [mm]f(z)=exp(sin(\bruch{1}{z}))[/mm]
>  
> Hallo,
>  
> ich weiß nicht genau wie ich diese Aufgabe lösen soll.
>  Die Funktion hat eine Singularität bei [mm]z_{0}=0.[/mm]
>  Wenn ich nun den Grenzwert bilde: [mm]\limes_{z\rightarrow 0}[/mm]
> f(z) habe ich ein Problem, da meiner Meinung nach der GW
> für sin(1/z) schon nicht existiert.
> Kann ich dann die Grenzwertbetrachtung zur Klassifizierung
> der Singularitäten nicht benutzen und muss über die
> Laurentreihe gehen oder wie mache ich das?
>  Über einen Tipp würde ich mich sehr freuen.


Sei g (z):=exp (sin (z)). Dann ist g eine ganze Funktion und kein Polynom.

In der Potenzreihenentwicklung von g um 0 sind also unendlich viele Koeffizienten ungleich Null. Was bedeutet dies fuer die Laurententwicklung von f um 0 ?

Beachte: f (z)=g (1/z)

Fred


Bezug
                
Bezug
Singularität klassifizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Mi 08.07.2015
Autor: Calculu


> > Klassifiziere die Singularität der folgenden Funktion:
>  >  [mm]f(z)=exp(sin(\bruch{1}{z}))[/mm]
>  >  
> > Hallo,
>  >  
> > ich weiß nicht genau wie ich diese Aufgabe lösen soll.
>  >  Die Funktion hat eine Singularität bei [mm]z_{0}=0.[/mm]
>  >  Wenn ich nun den Grenzwert bilde: [mm]\limes_{z\rightarrow 0}[/mm]
> > f(z) habe ich ein Problem, da meiner Meinung nach der GW
> > für sin(1/z) schon nicht existiert.
> > Kann ich dann die Grenzwertbetrachtung zur Klassifizierung
> > der Singularitäten nicht benutzen und muss über die
> > Laurentreihe gehen oder wie mache ich das?
>  >  Über einen Tipp würde ich mich sehr freuen.
>
>
> Sei g (z):=exp (sin (z)). Dann ist g eine ganze Funktion
> und kein Polynom.
>  
> In der Potenzreihenentwicklung von g um 0 sind also
> unendlich viele Koeffizienten ungleich Null. Was bedeutet
> dies fuer die Laurententwicklung von f um 0 ?

Das bedeutet, dass die Laurentreihe von f um 0, unendlich viele Koeffizienten ungleich Null hat und somit eine wesentliche Singularität vorliegt. Stimmt das?

> Beachte: f (z)=g (1/z)
>  
> Fred
>  


Bezug
                        
Bezug
Singularität klassifizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 08.07.2015
Autor: fred97


> > > Klassifiziere die Singularität der folgenden Funktion:
>  >  >  [mm]f(z)=exp(sin(\bruch{1}{z}))[/mm]
>  >  >  
> > > Hallo,
>  >  >  
> > > ich weiß nicht genau wie ich diese Aufgabe lösen soll.
>  >  >  Die Funktion hat eine Singularität bei [mm]z_{0}=0.[/mm]
>  >  >  Wenn ich nun den Grenzwert bilde:
> [mm]\limes_{z\rightarrow 0}[/mm]
> > > f(z) habe ich ein Problem, da meiner Meinung nach der GW
> > > für sin(1/z) schon nicht existiert.
> > > Kann ich dann die Grenzwertbetrachtung zur Klassifizierung
> > > der Singularitäten nicht benutzen und muss über die
> > > Laurentreihe gehen oder wie mache ich das?
>  >  >  Über einen Tipp würde ich mich sehr freuen.
> >
> >
> > Sei g (z):=exp (sin (z)). Dann ist g eine ganze Funktion
> > und kein Polynom.
>  >  
> > In der Potenzreihenentwicklung von g um 0 sind also
> > unendlich viele Koeffizienten ungleich Null. Was bedeutet
> > dies fuer die Laurententwicklung von f um 0 ?
>  
> Das bedeutet, dass die Laurentreihe von f um 0, unendlich
> viele Koeffizienten ungleich Null hat

Genauer: der Hauptteil der Laurentreihe von f um 0 hat unendlich viele Koeffizienten ungleich Null.

^  und somit eine

> wesentliche Singularität vorliegt. Stimmt das?

Ja

Fred



> > Beachte: f (z)=g (1/z)
>  >  
> > Fred
>  >  
>  


Bezug
                                
Bezug
Singularität klassifizieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Mi 08.07.2015
Autor: Calculu

Alles klar :-)
Vielen Dank für deine Hilfe!

Bezug
                                
Bezug
Singularität klassifizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Mi 08.07.2015
Autor: Calculu


> > > > Klassifiziere die Singularität der folgenden Funktion:
>  >  >  >  [mm]f(z)=exp(sin(\bruch{1}{z}))[/mm]
>  >  >  >  
> > > > Hallo,
>  >  >  >  
> > > > ich weiß nicht genau wie ich diese Aufgabe lösen soll.
>  >  >  >  Die Funktion hat eine Singularität bei [mm]z_{0}=0.[/mm]
>  >  >  >  Wenn ich nun den Grenzwert bilde:
> > [mm]\limes_{z\rightarrow 0}[/mm]
> > > > f(z) habe ich ein Problem, da meiner Meinung nach der GW
> > > > für sin(1/z) schon nicht existiert.
> > > > Kann ich dann die Grenzwertbetrachtung zur Klassifizierung
> > > > der Singularitäten nicht benutzen und muss über die
> > > > Laurentreihe gehen oder wie mache ich das?
>  >  >  >  Über einen Tipp würde ich mich sehr freuen.
> > >
> > >
> > > Sei g (z):=exp (sin (z)). Dann ist g eine ganze Funktion
> > > und kein Polynom.
>  >  >  
> > > In der Potenzreihenentwicklung von g um 0 sind also
> > > unendlich viele Koeffizienten ungleich Null. Was bedeutet
> > > dies fuer die Laurententwicklung von f um 0 ?
>  >  
> > Das bedeutet, dass die Laurentreihe von f um 0, unendlich
> > viele Koeffizienten ungleich Null hat
>
> Genauer: der Hauptteil der Laurentreihe von f um 0 hat
> unendlich viele Koeffizienten ungleich Null.
>  
> ^  und somit eine
> > wesentliche Singularität vorliegt. Stimmt das?
>
> Ja
>  
> Fred
>  
>
>
> > > Beachte: f (z)=g (1/z)
>  >  >  
> > > Fred
>  >  >  
> >  

>  


Kann ich auch so argumentieren:

f besitzt eine Singularität in [mm] z_{0} [/mm] = 0.
Betrachte die Folgen [mm] a_{n}=\bruch{1}{2*\pi*n} [/mm] und [mm] b_{n}=\bruch{1}{2*\pi*n + \bruch{\pi}{2}}. [/mm] Beide konvergieren gegeb Null für [mm] n\to \infty, [/mm] allerdings gilt: [mm] f(\bruch{1}{2*\pi*n})=1 [/mm] und [mm] f(\bruch{1}{2*\pi*n + \bruch{\pi}{2}}) [/mm] = e. Also liegt bei [mm] z_{0}=0 [/mm] eine wesentliche Singularität vor.

Eine weitere Funktion die ich untersuchen soll lautet:
[mm] f(z)=\bruch{1}{z*(e^{z}-1)} [/mm]
Auch hier liegt eine Singularität bei [mm] z_{0}=0 [/mm] vor. Es gilt: [mm] \limes_{z\rightarrow 0}\bruch{1}{z*(e^{z}-1)} [/mm] = [mm] \infty. [/mm] Also liegt ein Pol vor. Die Ordnung bestimmt man über die Nullstellen folgender Funktion: [mm] g(z)=\bruch{1}{f(z)} [/mm]
g hat eine doppelte Nullstelle bei 0. Also ist die Polstelle von der Ordnung 2.
Stimmt das so?

Bei der dritten Funktion (f(z)= [mm] \bruch{z}{sin(z)}) [/mm] hab ich keine Ahnung. Eigentlich treten doch hier unendlich viele Singularitäten auf? Wie gehe ich da vor?

Bezug
                                        
Bezug
Singularität klassifizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 02:20 Do 09.07.2015
Autor: fred97


> > > > > Klassifiziere die Singularität der folgenden Funktion:
>  >  >  >  >  [mm]f(z)=exp(sin(\bruch{1}{z}))[/mm]
>  >  >  >  >  
> > > > > Hallo,
>  >  >  >  >  
> > > > > ich weiß nicht genau wie ich diese Aufgabe lösen soll.
>  >  >  >  >  Die Funktion hat eine Singularität bei
> [mm]z_{0}=0.[/mm]
>  >  >  >  >  Wenn ich nun den Grenzwert bilde:
> > > [mm]\limes_{z\rightarrow 0}[/mm]
> > > > > f(z) habe ich ein Problem, da meiner Meinung nach der GW
> > > > > für sin(1/z) schon nicht existiert.
> > > > > Kann ich dann die Grenzwertbetrachtung zur Klassifizierung
> > > > > der Singularitäten nicht benutzen und muss über die
> > > > > Laurentreihe gehen oder wie mache ich das?
>  >  >  >  >  Über einen Tipp würde ich mich sehr freuen.
> > > >
> > > >
> > > > Sei g (z):=exp (sin (z)). Dann ist g eine ganze Funktion
> > > > und kein Polynom.
>  >  >  >  
> > > > In der Potenzreihenentwicklung von g um 0 sind also
> > > > unendlich viele Koeffizienten ungleich Null. Was bedeutet
> > > > dies fuer die Laurententwicklung von f um 0 ?
>  >  >  
> > > Das bedeutet, dass die Laurentreihe von f um 0, unendlich
> > > viele Koeffizienten ungleich Null hat
> >
> > Genauer: der Hauptteil der Laurentreihe von f um 0 hat
> > unendlich viele Koeffizienten ungleich Null.
>  >  
> > ^  und somit eine
> > > wesentliche Singularität vorliegt. Stimmt das?
> >
> > Ja
>  >  
> > Fred
>  >  
> >
> >
> > > > Beachte: f (z)=g (1/z)
>  >  >  >  
> > > > Fred
>  >  >  >  
> > >  

> >  

>
>
> Kann ich auch so argumentieren:
>  
> f besitzt eine Singularität in [mm]z_{0}[/mm] = 0.
>  Betrachte die Folgen [mm]a_{n}=\bruch{1}{2*\pi*n}[/mm] und
> [mm]b_{n}=\bruch{1}{2*\pi*n + \bruch{\pi}{2}}.[/mm] Beide
> konvergieren gegeb Null für [mm]n\to \infty,[/mm] allerdings gilt:
> [mm]f(\bruch{1}{2*\pi*n})=1[/mm] und [mm]f(\bruch{1}{2*\pi*n + \bruch{\pi}{2}})[/mm]
> = e. Also liegt bei [mm]z_{0}=0[/mm] eine wesentliche Singularität
> vor.

Na ja, ein wenig deutlicher musst Du schon werden. Mit den beiden Folgen kannst Du begruenden:

1. 0 ist keine hebbare Sing. von f,

2. 0 ist kein Pol von f.

Mach mal.


>  
> Eine weitere Funktion die ich untersuchen soll lautet:
>  [mm]f(z)=\bruch{1}{z*(e^{z}-1)}[/mm]
>  Auch hier liegt eine Singularität bei [mm]z_{0}=0[/mm] vor. Es
> gilt: [mm]\limes_{z\rightarrow 0}\bruch{1}{z*(e^{z}-1)}[/mm] =
> [mm]\infty.[/mm] Also liegt ein Pol vor. Die Ordnung bestimmt man
> über die Nullstellen folgender Funktion:
> [mm]g(z)=\bruch{1}{f(z)}[/mm]
>  g hat eine doppelte Nullstelle bei 0. Also ist die
> Polstelle von der Ordnung 2.
>  Stimmt das so?

Ja, das ist O.K.


>  
> Bei der dritten Funktion (f(z)= [mm]\bruch{z}{sin(z)})[/mm] hab ich
> keine Ahnung. Eigentlich treten doch hier unendlich viele
> Singularitäten auf? Wie gehe ich da vor

Mach Dir klar, dass f in 0 eine hebbare Sing.  hat  (Riemannscher Hebbarkeitssatz !)

In den weiteren Nullstellen des Sinus hat f jeweils einen Pol der Ordnung 1 (warum ?)

Fred



Bezug
                                                
Bezug
Singularität klassifizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:35 Fr 10.07.2015
Autor: Calculu


> > > > > > Klassifiziere die Singularität der folgenden Funktion:
>  >  >  >  >  >  [mm]f(z)=exp(sin(\bruch{1}{z}))[/mm]
>  >  >  >  >  >  
> > > > > > Hallo,
>  >  >  >  >  >  
> > > > > > ich weiß nicht genau wie ich diese Aufgabe lösen soll.
>  >  >  >  >  >  Die Funktion hat eine Singularität bei
> > [mm]z_{0}=0.[/mm]
>  >  >  >  >  >  Wenn ich nun den Grenzwert bilde:
> > > > [mm]\limes_{z\rightarrow 0}[/mm]
> > > > > > f(z) habe ich ein Problem, da meiner Meinung nach der GW
> > > > > > für sin(1/z) schon nicht existiert.
> > > > > > Kann ich dann die Grenzwertbetrachtung zur Klassifizierung
> > > > > > der Singularitäten nicht benutzen und muss über die
> > > > > > Laurentreihe gehen oder wie mache ich das?
>  >  >  >  >  >  Über einen Tipp würde ich mich sehr
> freuen.
> > > > >
> > > > >
> > > > > Sei g (z):=exp (sin (z)). Dann ist g eine ganze Funktion
> > > > > und kein Polynom.
>  >  >  >  >  
> > > > > In der Potenzreihenentwicklung von g um 0 sind also
> > > > > unendlich viele Koeffizienten ungleich Null. Was bedeutet
> > > > > dies fuer die Laurententwicklung von f um 0 ?
>  >  >  >  
> > > > Das bedeutet, dass die Laurentreihe von f um 0, unendlich
> > > > viele Koeffizienten ungleich Null hat
> > >
> > > Genauer: der Hauptteil der Laurentreihe von f um 0 hat
> > > unendlich viele Koeffizienten ungleich Null.
>  >  >  
> > > ^  und somit eine
> > > > wesentliche Singularität vorliegt. Stimmt das?
> > >
> > > Ja
>  >  >  
> > > Fred
>  >  >  
> > >
> > >
> > > > > Beachte: f (z)=g (1/z)
>  >  >  >  >  
> > > > > Fred
>  >  >  >  >  
> > > >  

> > >  

> >
> >
> > Kann ich auch so argumentieren:
>  >  
> > f besitzt eine Singularität in [mm]z_{0}[/mm] = 0.
>  >  Betrachte die Folgen [mm]a_{n}=\bruch{1}{2*\pi*n}[/mm] und
> > [mm]b_{n}=\bruch{1}{2*\pi*n + \bruch{\pi}{2}}.[/mm] Beide
> > konvergieren gegeb Null für [mm]n\to \infty,[/mm] allerdings gilt:
> > [mm]f(\bruch{1}{2*\pi*n})=1[/mm] und [mm]f(\bruch{1}{2*\pi*n + \bruch{\pi}{2}})[/mm]
> > = e. Also liegt bei [mm]z_{0}=0[/mm] eine wesentliche Singularität
> > vor.
>  
> Na ja, ein wenig deutlicher musst Du schon werden. Mit den
> beiden Folgen kannst Du begruenden:
>  
> 1. 0 ist keine hebbare Sing. von f,

Wäre 0 eine hebbare Singularität, müsste der GW für z [mm] \to [/mm] 0 eindeutig sein, also [mm] \limes_{z\rightarrow 0} [/mm] f(z) [mm] \in \IC [/mm]

>  
> 2. 0 ist kein Pol von f.

Wäre 0 ein Pol, müsste [mm] \limes_{z\rightarrow 0} [/mm] f(z) = [mm] \infty, [/mm] dies ist allerdings auch nicht der Fall, da immer ein endlicher GW angenommen wird.

>  
> Mach mal.
>  
>
> >  

> > Eine weitere Funktion die ich untersuchen soll lautet:
>  >  [mm]f(z)=\bruch{1}{z*(e^{z}-1)}[/mm]
>  >  Auch hier liegt eine Singularität bei [mm]z_{0}=0[/mm] vor. Es
> > gilt: [mm]\limes_{z\rightarrow 0}\bruch{1}{z*(e^{z}-1)}[/mm] =
> > [mm]\infty.[/mm] Also liegt ein Pol vor. Die Ordnung bestimmt man
> > über die Nullstellen folgender Funktion:
> > [mm]g(z)=\bruch{1}{f(z)}[/mm]
>  >  g hat eine doppelte Nullstelle bei 0. Also ist die
> > Polstelle von der Ordnung 2.
>  >  Stimmt das so?
>  
> Ja, das ist O.K.
>  
>
> >  

> > Bei der dritten Funktion (f(z)= [mm]\bruch{z}{sin(z)})[/mm] hab ich
> > keine Ahnung. Eigentlich treten doch hier unendlich viele
> > Singularitäten auf? Wie gehe ich da vor
>  
> Mach Dir klar, dass f in 0 eine hebbare Sing.  hat  
> (Riemannscher Hebbarkeitssatz !)

Also was mit klar ist, ist die Tatsache, dass mit l'Hopital gilt: [mm] \limes_{z\rightarrow 0} [/mm] f(z) = 1
Um den riemannschen Hebbarkeitssatz anzuwenden, könnte ich eine offene Kugel mit Radius r um 0 legen und müsste dann zeigen, dass f dort beschränkt ist.

> In den weiteren Nullstellen des Sinus hat f jeweils einen
> Pol der Ordnung 1 (warum ?)

Also die weiteren Nullstellen liegen bei [mm] 2*\pi*n [/mm] mit n [mm] \in \IZ. [/mm] Für ein beliebiges aber festes n [mm] \in \IZ [/mm] gilt:
[mm] \limes_{z\rightarrow 2*\pi*n} [/mm] f(z) = [mm] \infty, [/mm] also liegen Polstellen vor. Betrachte ich mir dann die Nullstellen der Funktion g(z) := [mm] \brich{1}{f(z)} [/mm] so hat diese für beliebiges aber festes n [mm] \in \IZ [/mm] jeweils einfache Nullstelle, also liegen nur Pole erster Ordnung vor.

Passt das so?

>  
> Fred
>  
>  


Bezug
                                                        
Bezug
Singularität klassifizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Fr 10.07.2015
Autor: fred97


> > > > > > > Klassifiziere die Singularität der folgenden Funktion:
>  >  >  >  >  >  >  [mm]f(z)=exp(sin(\bruch{1}{z}))[/mm]
>  >  >  >  >  >  >  
> > > > > > > Hallo,
>  >  >  >  >  >  >  
> > > > > > > ich weiß nicht genau wie ich diese Aufgabe lösen soll.
>  >  >  >  >  >  >  Die Funktion hat eine Singularität bei
> > > [mm]z_{0}=0.[/mm]
>  >  >  >  >  >  >  Wenn ich nun den Grenzwert bilde:
> > > > > [mm]\limes_{z\rightarrow 0}[/mm]
> > > > > > > f(z) habe ich ein Problem, da meiner Meinung nach der GW
> > > > > > > für sin(1/z) schon nicht existiert.
> > > > > > > Kann ich dann die Grenzwertbetrachtung zur Klassifizierung
> > > > > > > der Singularitäten nicht benutzen und muss über die
> > > > > > > Laurentreihe gehen oder wie mache ich das?
>  >  >  >  >  >  >  Über einen Tipp würde ich mich sehr
> > freuen.
> > > > > >
> > > > > >
> > > > > > Sei g (z):=exp (sin (z)). Dann ist g eine ganze Funktion
> > > > > > und kein Polynom.
>  >  >  >  >  >  
> > > > > > In der Potenzreihenentwicklung von g um 0 sind also
> > > > > > unendlich viele Koeffizienten ungleich Null. Was bedeutet
> > > > > > dies fuer die Laurententwicklung von f um 0 ?
>  >  >  >  >  
> > > > > Das bedeutet, dass die Laurentreihe von f um 0, unendlich
> > > > > viele Koeffizienten ungleich Null hat
> > > >
> > > > Genauer: der Hauptteil der Laurentreihe von f um 0 hat
> > > > unendlich viele Koeffizienten ungleich Null.
>  >  >  >  
> > > > ^  und somit eine
> > > > > wesentliche Singularität vorliegt. Stimmt das?
> > > >
> > > > Ja
>  >  >  >  
> > > > Fred
>  >  >  >  
> > > >
> > > >
> > > > > > Beachte: f (z)=g (1/z)
>  >  >  >  >  >  
> > > > > > Fred
>  >  >  >  >  >  
> > > > >  

> > > >  

> > >
> > >
> > > Kann ich auch so argumentieren:
>  >  >  
> > > f besitzt eine Singularität in [mm]z_{0}[/mm] = 0.
>  >  >  Betrachte die Folgen [mm]a_{n}=\bruch{1}{2*\pi*n}[/mm] und
> > > [mm]b_{n}=\bruch{1}{2*\pi*n + \bruch{\pi}{2}}.[/mm] Beide
> > > konvergieren gegeb Null für [mm]n\to \infty,[/mm] allerdings gilt:
> > > [mm]f(\bruch{1}{2*\pi*n})=1[/mm] und [mm]f(\bruch{1}{2*\pi*n + \bruch{\pi}{2}})[/mm]
> > > = e. Also liegt bei [mm]z_{0}=0[/mm] eine wesentliche Singularität
> > > vor.
>  >  
> > Na ja, ein wenig deutlicher musst Du schon werden. Mit den
> > beiden Folgen kannst Du begruenden:
>  >  
> > 1. 0 ist keine hebbare Sing. von f,
>  
> Wäre 0 eine hebbare Singularität, müsste der GW für z
> [mm]\to[/mm] 0 eindeutig sein, also [mm]\limes_{z\rightarrow 0}[/mm] f(z) [mm]\in \IC[/mm]
>  
> >  

> > 2. 0 ist kein Pol von f.
>   Wäre 0 ein Pol, müsste [mm]\limes_{z\rightarrow 0}[/mm] f(z) =
> [mm]\infty,[/mm] dies ist allerdings auch nicht der Fall, da immer
> ein endlicher GW angenommen wird.
>  
> >  

> > Mach mal.
>  >  
> >
> > >  

> > > Eine weitere Funktion die ich untersuchen soll lautet:
>  >  >  [mm]f(z)=\bruch{1}{z*(e^{z}-1)}[/mm]
>  >  >  Auch hier liegt eine Singularität bei [mm]z_{0}=0[/mm] vor.
> Es
> > > gilt: [mm]\limes_{z\rightarrow 0}\bruch{1}{z*(e^{z}-1)}[/mm] =
> > > [mm]\infty.[/mm] Also liegt ein Pol vor. Die Ordnung bestimmt man
> > > über die Nullstellen folgender Funktion:
> > > [mm]g(z)=\bruch{1}{f(z)}[/mm]
>  >  >  g hat eine doppelte Nullstelle bei 0. Also ist die
> > > Polstelle von der Ordnung 2.
>  >  >  Stimmt das so?
>  >  
> > Ja, das ist O.K.
>  >  
> >
> > >  

> > > Bei der dritten Funktion (f(z)= [mm]\bruch{z}{sin(z)})[/mm] hab ich
> > > keine Ahnung. Eigentlich treten doch hier unendlich viele
> > > Singularitäten auf? Wie gehe ich da vor
>  >  
> > Mach Dir klar, dass f in 0 eine hebbare Sing.  hat  
> > (Riemannscher Hebbarkeitssatz !)
>  
> Also was mit klar ist, ist die Tatsache, dass mit l'Hopital
> gilt: [mm]\limes_{z\rightarrow 0}[/mm] f(z) = 1
>  Um den riemannschen Hebbarkeitssatz anzuwenden, könnte
> ich eine offene Kugel mit Radius r um 0 legen und müsste
> dann zeigen, dass f dort beschränkt ist.
>  
> > In den weiteren Nullstellen des Sinus hat f jeweils einen
> > Pol der Ordnung 1 (warum ?)
>  
> Also die weiteren Nullstellen liegen bei [mm]2*\pi*n[/mm] mit n [mm]\in \IZ.[/mm]
> Für ein beliebiges aber festes n [mm]\in \IZ[/mm] gilt:
>  [mm]\limes_{z\rightarrow 2*\pi*n}[/mm] f(z) = [mm]\infty,[/mm] also liegen
> Polstellen vor. Betrachte ich mir dann die Nullstellen der
> Funktion g(z) := [mm]\brich{1}{f(z)}[/mm] so hat diese für
> beliebiges aber festes n [mm]\in \IZ[/mm] jeweils einfache
> Nullstelle, also liegen nur Pole erster Ordnung vor.
>  
> Passt das so?

Ja

FRED

>  
> >  

> > Fred
>  >  
> >  

>  


Bezug
                                                                
Bezug
Singularität klassifizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Fr 10.07.2015
Autor: Calculu

Vielen Dank für deine Hilfe!

Eine weitere Frage hab ich noch:

Wie sieht es bei f(z) = [mm] \bruch{1}{z^{2}*(z+1)}+cos(\bruch{1}{z}) [/mm] aus?
Meine Idee:
Setze [mm] g(z):=\bruch{1}{z^{2}*(z+1)} [/mm] und [mm] h(z):=cos(\bruch{1}{z}) [/mm]
g hat bei 0 einen Pol zweiter Ordnung und h eine wesentliche Singulartät. Ein Satz aus unserer VL besagt dann, dass 0 dann wesenliche Singularität von f=g+h ist.
Für die Singularität bei -1 bräuchte ich einen Tipp.


Bezug
                                                                        
Bezug
Singularität klassifizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Sa 11.07.2015
Autor: fred97


> Vielen Dank für deine Hilfe!
>  
> Eine weitere Frage hab ich noch:
>  
> Wie sieht es bei f(z) =
> [mm]\bruch{1}{z^{2}*(z+1)}+cos(\bruch{1}{z})[/mm] aus?
>  Meine Idee:
>  Setze [mm]g(z):=\bruch{1}{z^{2}*(z+1)}[/mm] und
> [mm]h(z):=cos(\bruch{1}{z})[/mm]
>  g hat bei 0 einen Pol zweiter Ordnung und h eine
> wesentliche Singulartät. Ein Satz aus unserer VL besagt
> dann, dass 0 dann wesenliche Singularität von f=g+h ist.


Ja, so ist das.


> Für die Singularität bei -1 bräuchte ich einen Tipp.

-1 ist ein Pol 1. Ordnung.

FRED

>    


Bezug
                                                                                
Bezug
Singularität klassifizieren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:18 So 12.07.2015
Autor: Calculu


> > Vielen Dank für deine Hilfe!
>  >  
> > Eine weitere Frage hab ich noch:
>  >  
> > Wie sieht es bei f(z) =
> > [mm]\bruch{1}{z^{2}*(z+1)}+cos(\bruch{1}{z})[/mm] aus?
>  >  Meine Idee:
>  >  Setze [mm]g(z):=\bruch{1}{z^{2}*(z+1)}[/mm] und
> > [mm]h(z):=cos(\bruch{1}{z})[/mm]
>  >  g hat bei 0 einen Pol zweiter Ordnung und h eine
> > wesentliche Singulartät. Ein Satz aus unserer VL besagt
> > dann, dass 0 dann wesenliche Singularität von f=g+h ist.
>
>
> Ja, so ist das.
>  
>
> > Für die Singularität bei -1 bräuchte ich einen Tipp.
>  
> -1 ist ein Pol 1. Ordnung.

Jetzt ist es klar geworden.
[mm] \limes_{z\rightarrow -1} |\bruch{1}{z^{2}*(z+1)}+cos(\bruch{1}{z})| [/mm] = [mm] \infty [/mm] Und für m(z):= [mm] \bruch{1}{f(z)} [/mm] liegt bei -1 eine einfache Nullstelle vor, demnach Pol erster Ordnung.

Danke!

>  
> FRED
>  >    
>  


Bezug
                                                                                        
Bezug
Singularität klassifizieren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 14.07.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]