matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisSingularität
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Singularität
Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 06.01.2016
Autor: Reynir

Aufgabe
Bestimmen und klassifizieren Sie alle Singularitäten der Funktion [mm] $\frac{\cos(\pi z)}{(z-\frac{1}{2})^2}. [/mm]

Ich habe das soweit nachvollzogen, aber ich hätte jetzt getippt, dass bei [mm] $\frac{1}{2}$ [/mm] ein Pol der Ordnung zwei liegt, aber das müsste laut der Lösung einer der Ordnung 1 sein, weil der cos hier auch eine Nullstelle hat.
Ich weis, dass es sich bei Polynomen kürzen lässt (blödes Beispiel $ [mm] \frac{(x-1)}{(x-1)^2}=\frac{1}{x-1}$), [/mm] aber hier sehe ich nicht, warum das gelten sollte.
Viele Grüße,
Reynir
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

[mm] $\cos(\pi [/mm] z)$ ist holomorph und damit als Potenzreihe darstellbar.
Überlege dir kurz, was die Eigenschaft, dass dort eine Nullstelle vorliegt für die Potenzreihe bedeutet und dann begründe, warum du kürzen kannst.

Gruß,
Gono.

Bezug
                
Bezug
Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Fr 08.01.2016
Autor: Reynir

Danke für deine Hilfe. ;)
Viele Grüße,
Reynir

Bezug
        
Bezug
Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 07:17 Do 07.01.2016
Autor: fred97

$cos( [mm] \pi [/mm] z)$ hat in z=1/2 eine einfache Nullstelle (warum ?).

Somit gibt es eine ganze Funktion f mit

  
   $cos( [mm] \pi z)=(z-\bruch{1}{2})*f(z)$ [/mm]  für alle z [mm] \in \IC [/mm] und f(1/2) [mm] \ne [/mm] 0.

Damit haben wir

   $ [mm] \frac{\cos(\pi z)}{(z-\frac{1}{2})^2}= \frac{f(z)}{z-\frac{1}{2}}$ [/mm]

FRED
  

Bezug
                
Bezug
Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Fr 08.01.2016
Autor: Reynir

Hi,
ein Argument, das mir einfiele ist, dass mehrfache Nullstellen eines Polynoms auch Nullstellen von dessen Ableitung sind, entsprechend dann auch für Potenzreihen (das fände ich zumindest naheliegend). [mm] $\cos'=- \sin$ [/mm] und die Nullstellen des cos sind keine vom sin.
Was ist der Ansatz zu zeigen, dass es so eine ganze Funktion gibt? Einfach z-1 aus der Potenzreihendarstellung rausziehen?
Viele Grüße,
Reynir.

Bezug
                        
Bezug
Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Sa 09.01.2016
Autor: fred97


> Hi,
>  ein Argument, das mir einfiele ist, dass mehrfache
> Nullstellen eines Polynoms auch Nullstellen von dessen
> Ableitung sind, entsprechend dann auch für Potenzreihen
> (das fände ich zumindest naheliegend). [mm]\cos'=- \sin[/mm] und
> die Nullstellen des cos sind keine vom sin.

Ja


> Was ist der Ansatz zu zeigen, dass es so eine ganze
> Funktion gibt? Einfach z-1 aus der Potenzreihendarstellung
> rausziehen?

Allgemein:

ist g: [mm] \IC\to \IC [/mm] holomorph, [mm] z_0 \in \IC [/mm] und und [mm] g(z_0)=0 [/mm] und [mm] g'(z_0) \ne [/mm] 0, so sieht die Potenzreihenentwicklung von g um [mm] z_0 [/mm] so aus:

  [mm] g(z)=a_1(z-z_0)+a_2(z-z_0)^2 [/mm] + ....   für z [mm] \in \IC. [/mm]

Dabei ist [mm] a_1=g'(z_0) \ne [/mm] 0.

Setzt man [mm] f(z):=a_1+a_2(z-z_0)+ [/mm] ....   für z [mm] \in \IC, [/mm] so ist f eine ganze Funktion,

    [mm] g(z)=(z-z_0)f(z) [/mm]

und [mm] f(z_0)=a_1 \ne [/mm] 0.

FRED

>  Viele Grüße,
>  Reynir.


Bezug
                                
Bezug
Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Sa 09.01.2016
Autor: Reynir

Super, danke für deine Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]