matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisSingulärwertzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Singulärwertzerlegung
Singulärwertzerlegung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singulärwertzerlegung: Problem mit Aufgabe
Status: (Frage) überfällig Status 
Datum: 18:11 Sa 12.01.2013
Autor: mikexx

Aufgabe
Es sei folgender Operator gegeben:

[mm] $T\colon L^2([0,1])\to H^1([0,1]), x\mapsto\int\limits_0^t x(s)\, [/mm] ds$

Zeige, dass die Singulärwertzerlegung von T gegeben ist durch

[mm] $\sigma_j=\frac{1}{(j-1/2)\pi},~~~~~~~~~~v_j(x)=\sqrt{2}\cos((j-1/2)\pi x),~~~~~~~~~~u_j(x)=\sqrt{2}\sin((j-1/2)\pi [/mm] x)$.



Wie kann ich diese Aufgabe lösen?

Ich weiß nicht, was ich machen muss (auch, wenn sich das blöde anhört, ich weiß es wirklich nicht).

Ich habe provisorisch den adjungierten Operator schonmal bestimmt, weiß aber nicht, ob man ihn überhaupt benötigt:

Der adjungierte Operator ist gegeben durch

[mm] $x\mapsto\int\limits_t^1 x(s)\, [/mm] ds x'(t)$.



Bitte, kann mir jemand helfen?


Ganz viele Grüße

mikexx

        
Bezug
Singulärwertzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:26 So 13.01.2013
Autor: mikexx

Aufgabe
Ich nehme an, daß dort ein Fehler in der Aufgabenstellung ist und daß man die gegebene Singulärwertzerlegung vielmehr für den Operator

[mm] $S\colon L^2([0,1]\to L^2([0,1]), x\mapsto\int\limits_0^t x(s)\, [/mm] ds$

nachweisen soll, dessen adjungierter Operator gegeben ist durch

[mm] $x\mapsto\int\limits_t^1 x(s)\, [/mm] ds$.



Zumindest kann ich dann zeigen, daß

[mm] $Sv_j=\sigma_ju_j,~~~S^{\star}u_j=\sigma_jv_j$. [/mm]

Muss man hier sonst noch etwas zeigen?

Ich würde mich sehr über Eure Hilfe freuen!

Grüße

mikexx

Bezug
                
Bezug
Singulärwertzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:07 So 13.01.2013
Autor: mikexx

Aufgabe
Ich denke ich muss noch zeigen, daß

[mm] $\left\{v_j\right\}$ [/mm] eine Orthonormalbasis von [mm] $\operatorname{ker}(S)^{\bot}$ [/mm]

und

[mm] $\left\{u_j\right\}$ [/mm] eine Orthonormalbasis von [mm] $\overline{\operatorname{ran}(S)}$ [/mm]

ist. Nun ist es ja so, daß hier [mm] $\operatorname{ker}(S)=\left\{0\right\}$ [/mm] und ebenso [mm] $\operatorname{ker}(S^{\star})=\left\{0\right\}$. [/mm]

Damit muss ich hier zeigen, daß [mm] $\left\{v_j\right\}$ [/mm] und [mm] $\left\{u_j\right\}$ [/mm] Orthonormalbasen von [mm] $L^2([0,1])$ [/mm] sind.

Ich habe bereits gezeigt, daß sie jeweils Orthonormalsysteme sind.
Nun muss ich also "nur noch" zeigen, daß

[mm] $\overline{\operatorname{span}(v_j)}=L^2([0,1])$ [/mm] und

[mm] $\overline{\operatorname{span}(u_j)}=L^2([0,1])$. [/mm]


Wie zeigt man das? Ich bekomme es leider alleine nicht hin.

Ich habe leider noch keinen Ansatz dafür...


Kann und mag mir jmd. bitte helfen?

Bezug
                        
Bezug
Singulärwertzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 15.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Singulärwertzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 15.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Singulärwertzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 14.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]