matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteSingulärwertzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Singulärwertzerlegung
Singulärwertzerlegung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singulärwertzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 So 25.09.2011
Autor: Zukku

Aufgabe
Man berechne die Singulärwertzerlegung der Matrix [mm] A=\pmat{ 0 & 1 & 2 \\ 1 & 0 & 1 }. [/mm]



Dies ist meine erste Singulärwertzerlegung, also stelle ich mich vielleicht blöd an. Da es sich um eine 2x3-Matrix handelt, wird die Singulärwertzerlegung also aus einer 2x2, einer 2x3 und einer 3x3-Matrix bestehen.
Ich berechne die Gram-Matrix [mm] A'A=\pmat{ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 5 } [/mm] und dann ihre Eigenwerte [mm] (\lambda_1=6, \lambda_2=1, \lambda_3=0.) [/mm]
Nun berechne ich die zugehörigen Eigenvektoren (und normiere sie?):
Ich erhalte [mm] \frac{1}{\sqrt(30)}\vektor [/mm] {1  2  5}, [mm] \frac{1}{\sqrt(5)}\vektor [/mm] {-2  1  0} und [mm] \frac{1}{\sqrt(6)}\vektor [/mm] {1  -2  -1} (sollen "stehende" Vektoren sein)

Diese würde ich jetzt "gekippt" schreiben, um die Matrix V' zu erhalten, richtig soweit? [mm] V'=\pmat{ \frac{1}{\sqrt(30)} & \frac{2}{\sqrt(30)} &\frac{5}{\sqrt(30)} \\ \frac{-2}{\sqrt(5)} & \frac{1}{\sqrt(5)} & 0 \\ \frac{1}{\sqrt(6)} & \frac{-2}{\sqrt(6)} & \frac{-1}{\sqrt(6)} }. [/mm]

Passt das bis hierher? Und wie erhalte ich U?

Danke für eure Hilfen,
Zukku

        
Bezug
Singulärwertzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 So 25.09.2011
Autor: MathePower

Hallo Zukku,

> Man berechne die Singulärwertzerlegung der Matrix [mm]A=\pmat{ 0 & 1 & 2 \\ 1 & 0 & 1 }.[/mm]
>  
>
> Dies ist meine erste Singulärwertzerlegung, also stelle
> ich mich vielleicht blöd an. Da es sich um eine 2x3-Matrix
> handelt, wird die Singulärwertzerlegung also aus einer
> 2x2, einer 2x3 und einer 3x3-Matrix bestehen.
>  Ich berechne die Gram-Matrix [mm]A'A=\pmat{ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 5 }[/mm]
> und dann ihre Eigenwerte [mm](\lambda_1=6, \lambda_2=1, \lambda_3=0.)[/mm]
>  
> Nun berechne ich die zugehörigen Eigenvektoren (und
> normiere sie?):
>  Ich erhalte [mm]\frac{1}{\sqrt(30)}\vektor[/mm] {1  2  5},
> [mm]\frac{1}{\sqrt(5)}\vektor[/mm] {-2  1  0} und
> [mm]\frac{1}{\sqrt(6)}\vektor[/mm] {1  -2  -1} (sollen "stehende"
> Vektoren sein)
>  
> Diese würde ich jetzt "gekippt" schreiben, um die Matrix
> V' zu erhalten, richtig soweit? [mm]V'=\pmat{ \frac{1}{\sqrt(30)} & \frac{2}{\sqrt(30)} &\frac{5}{\sqrt(30)} \\ \frac{-2}{\sqrt(5)} & \frac{1}{\sqrt(5)} & 0 \\ \frac{1}{\sqrt(6)} & \frac{-2}{\sqrt(6)} & \frac{-1}{\sqrt(6)} }.[/mm]
>  
> Passt das bis hierher? Und wie erhalte ich U?
>  


Gehe doch so vor, wie  []hier beschrieben.


> Danke für eure Hilfen,
>  Zukku


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]