matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeSinguläres GS lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Singuläres GS lösen
Singuläres GS lösen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singuläres GS lösen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:36 So 24.07.2011
Autor: lorenz74

Aufgabe
Bei der Berechnung von B-Spline Kurven ergibt sich folgendes mathematisches Problem:

[mm] D_{c} [/mm] = [mm] \summe_{i=0}^{n}B_{i}^{k}(s_{c})*q_{i} [/mm] (1)

wobei k die Ordnung, B die jweilige Basisfunktion, [mm] s_{c} [/mm] die entsprechenden Parameter (0 [mm] \le s_{c} \le [/mm] 1) (0 [mm] \le [/mm] c [mm] \le [/mm] n) und q die Kontrollpunkte der B-Spline Kurve sind. [mm] D_{c} [/mm] sind die fertig interpolierten Werte. Die Basisfunktionen sind wie folgt definiert:

[mm] B_{i}^{0}(s_{c})=\begin{cases} 1, & \mbox{falls } u_{i}\le s_{c} \le u_{i+1} \\ 0, & \mbox{sonst}\end{cases} [/mm]

[mm] B_{i}^{k}(s_{c})=\bruch{s_{c}-u_{i}}{u_{i+k}-u_{i}}*B_{i}^{k-1}(s_{c})+\bruch{u_{i+k+1}-s_{c}}{u_{i+k+1}-u_{i+1}}*B_{i+1}^{k-1}(s_{c}) [/mm]

u ist hierbei der sog. Knotenvektor der B-Spline Kurve. Man löse das Gleichungssystem nach q auf. D, u und k seien gegeben. Das hier beschriebene Problem wird auch als sog. "curve fitting" beschrieben. Näheres dazu gibt es im folgenden PDF: http://www.comp.leeds.ac.uk/yisong/archives/YiSong_PhDThesis.pdf

Einleitung zur Thematik ab Seite 68 (Seite 83 im PDF File).
Gleichungen und oben genanntes Problem ab Seite 85 (Seite 100 im PDF File)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Meine Idee:

Gleichung (1) lässt sich auch als Matrix darstellen:

[mm] \vektor{D_{0} \\ D_{1} \\ \vdots \\ D_{n}} [/mm] = [mm] \pmat{B_{0}^{k}(s_{0}) & B_{1}^{k}(s_{0}) & \ldots & B_{n}^{k}(s_{0}) \\ B_{0}^{k}(s_{1}) & B_{1}^{k}(s_{1}) & \ldots & B_{n}^{k}(s_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ B_{0}^{k}(s_{n}) & B_{1}^{k}(s_{n}) & \ldots & B_{n}^{k}(s_{n})}*\vektor{q_{0} \\ q_{1} \\ \vdots \\ q_{n}} [/mm] (2)

Kürzer:

D=B*q (3)

Zuerst wollte ich einfach die Inverse von der Matrix bilden und dann damit (von links) multiplizieren:

[mm] B^{-1}*D=q [/mm]

Leider habe ich dann rausbekommen, dass A singulär ist, da ihre Determinante gleich 0 ist. Das bedeutet, dass A nicht invertierbar ist.

Weiterhin hatte ich überlegt eine LU Zerlegung durchzuführen. Diese funktioniert aber nur wenn die Matrix regülär bzw. invertierbar ist.
Meine Frage ist nun, ob jemand weiß wie ich eine singuläres Gleichungssystem löse.

Ich habe den im PDF File beschriebenen Algorithmus bereits implementiert, bekomme aufgrund der Nichtinvertierbarkeit von B aber entweder 0 oder falsche Ergebnisse raus. Vielleicht habe ich die Problematik jetzt ein wenig zu ausführlich beschrieben, da ich ja eigentlich nur wissen will wie ich ein singuläres GS lösen kann. Ich hoffe trotzdem, dass mir jemand einen guten Tipp geben kann.
Grüße

        
Bezug
Singuläres GS lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:59 Mo 25.07.2011
Autor: Stoecki

ich kenne mich nicht wirklich mit b-splines aus, aber es gibt einige andere numerische verfahren, in denen bestimmte parameter einfach gesetzt werden. zum beispiel bei einigen quadraturverfahren ist das der fall. üblicherweise hat man einen allgemein gültigen matrixrang gegeben, weswegen man den freiheitsgrad kennt.

in deinem fall bin ich mir aber gerade gar nicht sicher, ob die matrix wirklich nicht invertierbar ist. für k=0 ist es eine obere dreiecksmatrix, deren diagonaleinträge immer 1 sind. diese wäre also in jedem fall invertierbar. das würde ich im zweifel noch mal prüfen

Bezug
                
Bezug
Singuläres GS lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Mo 25.07.2011
Autor: lorenz74

hi,

erstmal danke für deine Antwort. Ich lasse mir momentan die Basismatrix B für k=3 mittels einem Algorithmus in C++ berechnen. Den Algo habe ich selber geschrieben und ich bin mir recht sicher, dass dieser richtig implementiert ist. Danach trage ich die Ergebnisse in eine OpenCV-Matrix B ein. Zur Invertierung benutze ich die Funktion cvInvert(B). Die Determinante lasse ich mir über die Funktion  determinant(B^-1) ausrechnen. Es kann natürlich sein, dass entweder die Basismatrix falsch ist oder die OpenCV Funktionen cvInvert() bzw. determinant(...) falsche Ergebnisse liefern. Ich werde mir zur Determinante nochmal Gedanken machen.

Grüße

Bezug
        
Bezug
Singuläres GS lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Sa 30.07.2011
Autor: lorenz74

Hi Leute,

mein Problem hat sich zum Glück von selbst gelöst. Das GS ist garnicht singulär. Für Leute die trotzdem ein singuläres GS lösen wollen, empfiehlt sich die sog. Pseudoinverse. Diese lässt bsp. mit Lapackpp über die SVD (Singualr Value Decomposition) errechnen.

Grüße

Bezug
                
Bezug
Singuläres GS lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Sa 30.07.2011
Autor: felixf

Moin,

> mein Problem hat sich zum Glück von selbst gelöst. Das GS
> ist garnicht singulär.

ja, das wollte ich auch gerade mal nachpruefen, als ich dann sah dass du das bereits geloest hast :)

Ich hab die Frage mal auf "reagiert" gesetzt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]