Sind R und C gleichmächtig? < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
(keine Aufgabe)
Sind [mm] \IR [/mm] und [mm] \IC [/mm] gleichmächtig?
Ich könnte mit beidem recht gut leben:
a) Ja, da die reellen Zahlen sowieso schon "hyper-unendlich" sind, man sich also à la Fraktal unendlich weit in ein winziges Intervall vertiefen kann.
b) Nein, da die komplexen Zahlen zwar alle Reellen Zahlen enthalten, aber eben "noch mehr" als diese.
Für mich klingt das Argument für "Nein" glaubwürdiger, aber das gleiche dachte ich auch schon, bevor ich erfuhr, dass [mm] \IN \times \IN [/mm] und [mm] \IN [/mm] gleichmächtig sind.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:15 Fr 16.11.2012 | Autor: | felixf |
Moin!
> (keine Aufgabe)
>
> Sind [mm]\IR[/mm] und [mm]\IC[/mm] gleichmächtig?
>
> Ich könnte mit beidem recht gut leben:
> a) Ja, da die reellen Zahlen sowieso schon
> "hyper-unendlich" sind, man sich also à la Fraktal
> unendlich weit in ein winziges Intervall vertiefen kann.
Ja, beide sind gleichmaechtig. Es gibt eine bijektive Abbildung [mm] $\IR^2 \to \IC$ [/mm] (womit [mm] $\IR^2$ [/mm] und [mm] $\IC$ [/mm] gleichmaechtig sind), und man kann recht einfach zeigen, dass [mm] $\IR$ [/mm] und [mm] $\IR \times \IR$ [/mm] gleichmaechtig sind. (Per Induktion ist somit [mm] $\IR$ [/mm] genauso maechtig wie [mm] $\IR^n$ [/mm] fuer jedes $n [mm] \ge [/mm] 1$.)
Am einfachsten zeigt man es, indem man erst zeigt, dass [mm] $\IR$ [/mm] und $[0, 1)$ gleichmaechtig sind. Dann zeigt man, dass $[0, 1)$ gleichmaechtig zu $[0, 1) [mm] \times [/mm] [0, 1)$ ist, und dann ist man eigentlich fertig
> b) Nein, da die komplexen Zahlen zwar alle Reellen Zahlen
> enthalten, aber eben "noch mehr" als diese.
Das Argument hat bei den natuerlichen Zahlen und den rationalen Zahlen schon nicht funktioniert
> Für mich klingt das Argument für "Nein" glaubwürdiger,
> aber das gleiche dachte ich auch schon, bevor ich erfuhr,
> dass [mm]\IN \times \IN[/mm] und [mm]\IN[/mm] gleichmächtig sind.
Genau :)
LG Felix
|
|
|
|