matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesSin Cos
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Sin Cos
Sin Cos < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sin Cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Di 10.11.2015
Autor: Anmahi

Aufgabe
Zeigen Sie, dass sin(x) + cos(x) = [mm] \wurzel{2} sin(x+\bruch{\pi}{4}). [/mm]

Ich hab gedacht, dass ich die Additionstheoreme anwenden kann, also
sin(x+y) = sin(x) [mm] \* [/mm] cos(y) + cos(x) [mm] \* [/mm] sin(y)

Das hab ich dann so eingesetzt:
sin(x) * [mm] cos(\bruch{\pi}{4}) [/mm] + cos(x) * [mm] sin(\bruch{\pi}{4}) [/mm]

Dann wusste ich aber nicht weiter weil ich nicht genau verstehe wie man mit sin und cos addiert und multipliziert. kann mir das jemand erklären?

        
Bezug
Sin Cos: Tipp
Status: (Antwort) fertig Status 
Datum: 16:44 Di 10.11.2015
Autor: Roadrunner

Hallo Anmahi!


Bedenke, dass gilt:  [mm] $\sin\left(\tfrac{\pi}{4}\right) [/mm] \ = \ [mm] \cos\left(\tfrac{\pi}{4}\right) [/mm] \ = \ [mm] \bruch{1}{\wurzel{2}} [/mm] \ = \ [mm] \tfrac{1}{2}*\wurzel{2}$ [/mm] .


Gruß vom
Roadrunner

Bezug
                
Bezug
Sin Cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Di 10.11.2015
Autor: Anmahi

Ich verstehe den tipp nicht, tut mir leid

Bezug
                        
Bezug
Sin Cos: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Di 10.11.2015
Autor: schachuzipus

Hallo,

> Ich verstehe den tipp nicht, tut mir leid

Setze die Werte für [mm] $\cos(\pi/4)$ [/mm] und [mm] $\sin(\pi/4)$ [/mm] ein in deine obige Gleichung ...

Gruß

schachuzipus

Bezug
                                
Bezug
Sin Cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Di 10.11.2015
Autor: Anmahi

danke, also:

sin(x) * [mm] cos(\bruch{\pi}{4}) [/mm] + cos(x) * [mm] sin(\bruch{\pi}{4}) [/mm] = sin(x + [mm] \bruch{\pi}{4}) [/mm]

oder

sin(x)*0,9999 + cos(x)*0,0137 = sin(x+0,7854)?


und wie addiert und multipliziert man mit sin und cos?

Bezug
                                        
Bezug
Sin Cos: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Di 10.11.2015
Autor: schachuzipus

Hallo,

> danke, also:

>

> sin(x) * [mm]cos(\bruch{\pi}{4})[/mm] + cos(x) * [mm]sin(\bruch{\pi}{4})[/mm]
> = sin(x + [mm]\bruch{\pi}{4})[/mm]

>

> oder

>

> sin(x)*0,9999 + cos(x)*0,0137 = sin(x+0,7854)?

Liest du die Antworten nicht?

[mm]\sin(\pi/4)=\cos(\pi/4)=\frac{1}{\sqrt 2}[/mm]

Also mit deinem Additionstheorem:

[mm]\red{\sqrt 2}\cdot{}\sin(x+\pi/4)=\red{\sqrt 2}\cdot{}\left[\\sin(x)\cdot{}\cos(\pi/4)+\cos(x)\cdot{}\sin(\pi/4)\right][/mm]

Nun einsetzen und [mm]\frac{1}{\sqrt 2}[/mm] ausklammern ...

>
>

> und wie addiert und multipliziert man mit sin und cos?

Was meinst du damit?

Gruß

schachuzipus

Bezug
                                                
Bezug
Sin Cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 10.11.2015
Autor: Anmahi

Die Antwort ist nicht richtig zu lesen, da steht nur irgendetwas was man anklicken kann . ich glaube das ist der quelltext den man da sieht.

ich weiß nicht ob man sinus und cosinus irgendwie zusammenrechnen kann oder nicht.

Bezug
                                                        
Bezug
Sin Cos: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Di 10.11.2015
Autor: schachuzipus

Der Formeleditor ist momentan kapott, also

Nochmal:

Setze in deinem Additionstheorem für sin(pi/4) und cos(pi/4) jeweils den Wert 1/ wurzel(2) ein

Dann kannst du das ausklammern ...

Gruß

schachuzipus

Bezug
                                                                
Bezug
Sin Cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Mi 11.11.2015
Autor: Anmahi

Also so?:
sin(x) * [mm] cos(\bruch{\pi}{4}) [/mm] + cos(x) * [mm] sin(\bruch{\pi}{4}) [/mm] = sin(x + [mm] \bruch{\pi}{4}) [/mm]

[mm] sin(\bruch{\pi}{4}) [/mm] = [mm] cos(\bruch{\pi}{4}) [/mm] = [mm] \bruch{1}{\wurzel{2}} [/mm]

sin(x) * [mm] \bruch{1}{\wurzel{2}} [/mm] + cos(x) * [mm] \bruch{1}{\wurzel{2}} [/mm] = sin(x + [mm] \bruch{\pi}{4}) [/mm]

[mm] \bruch{1}{\wurzel{2}} [/mm] (sin(x) + cos(x)) = sin(x + [mm] \bruch{\pi}{4}) [/mm]  | * [mm] \wurzel{2} [/mm]

sin(x) + cos(x) = [mm] \wurzel{2} [/mm] sin(x + [mm] \bruch{\pi}{4}) [/mm]

Gruß
Anmahi



Bezug
                                                                        
Bezug
Sin Cos: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mi 11.11.2015
Autor: fred97


> Also so?:
>  sin(x) * [mm]cos(\bruch{\pi}{4})[/mm] + cos(x) *
> [mm]sin(\bruch{\pi}{4})[/mm] = sin(x + [mm]\bruch{\pi}{4})[/mm]
>  
> [mm]sin(\bruch{\pi}{4})[/mm] = [mm]cos(\bruch{\pi}{4})[/mm] =
> [mm]\bruch{1}{\wurzel{2}}[/mm]
>  
> sin(x) * [mm]\bruch{1}{\wurzel{2}}[/mm] + cos(x) *
> [mm]\bruch{1}{\wurzel{2}}[/mm] = sin(x + [mm]\bruch{\pi}{4})[/mm]
>  
> [mm]\bruch{1}{\wurzel{2}}[/mm] (sin(x) + cos(x)) = sin(x +
> [mm]\bruch{\pi}{4})[/mm]  | * [mm]\wurzel{2}[/mm]
>  
> sin(x) + cos(x) = [mm]\wurzel{2}[/mm] sin(x + [mm]\bruch{\pi}{4})[/mm]

Ja

FRED

>  
> Gruß
>  Anmahi
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]