matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOperations ResearchSimplex
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Operations Research" - Simplex
Simplex < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Simplex: Computerumsetzung
Status: (Frage) überfällig Status 
Datum: 18:33 Di 22.05.2007
Autor: Simple84

Aufgabe
In einem Artikel von 1969 habe ich gefunden, dass ein damaliger Computer bei der Berechnung eines linearen Programms mit Hilfe der Simplexmethode in die Knie gegangen ist, wenn das lineare Programm 1000 Nebenbedingungen hatte.

Leider habe ich keine Quelle gefunden, wo so eine Abschätzung für heute drinsteht. Kennt jemand eine zuverlässige Quelle, bei wie vielen Nebenbedingungen auch ein aktueller Computer nicht in vertretbarer Zeit zu einem Ergebnis kommt?

Schönen Gruß

___________________________________
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Simplex: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mi 23.05.2007
Autor: piet.t

Hmm, gute Frage....

Ich gebe da einfach einmal ein fröhliches "kommt drauf an" als Antwort.
Denn:
- Was ist ein aktueller Computer? Ein 1000-CPU-Supercomputer in einem Rechenzentrum oder das, was ich unter dem Schreibtisch stehen habe?
- Was ist "vertretbare Zeit"? Wird der Simplex pro Iterationsschritt in einem MIP aufgerufen (und damit vielleicht ein paar 1000 mal bis zur Lösung des MIP), dann wird das sicher etwas anderes bedeuten, als wenn ein komplexes Planungsproblem zu lösen ist, wo die Kiste ruhig auch mal eine Nacht durchnudeln kann.

Ich denke, eine wirklich harte Grenze wird sich hier nicht finden lassen. Abgesehen von der Rechenleistung moderner CPUs hat sich natürlich auch die Speicherausstattung und die größe des Adressierbaren Speichers deutlich vergrößert. Durch Zwischenspeichern von Werten auf Festplatte kann man die Grenze, ab der einem der Speicher ausgeht praktisch beliebig weit hinausschieben, allerdings geht das natürlich massiv auf die Problemlösungszeit.
Darüberhinaus haben sich auch die Implementierungen des Simplex deutlich verbessert und nutzen Eigenschaften wie sparsity (viele Nullen im Problem) oder supersparsity (viele gleiche Werte im Problem) deutlich effektiver. Auch solche Eigenschaften sind (neben der Anzahl der Restriktionen) wesentlich für die effiziente Lösbarkeit des LP.
Allerdings lässt sich sicher sagen, dass die Grenzen heute um mehrere Größenordnungen höher liegen.
In der NETLIB-Sammlung (eine Sammlung von Standard-LP-Problemen z.B. zum Testen von Solvern) gibt es Probleme mit 100000 Restriktionen und 150000 Variablen (bei 500000 Einträgen [mm] \not= [/mm] 0, Problem KEN-18), die sicher in vertretbarer Zeit lösbar sind.
Um die Größenordnung zu haben: in dem Artikel, den ich gerade bei de Hand habe testet der Autor seinen Lösungsalgorithmus (allerdings eine Variante des dualen Simplex-Algorithmus) mit einen PentiumIII50 und 256MB RAM. Ein Problem der Größenordnung 23000x15000 löst er hier in ca. 500 sec.

Das war zwar nicht ganz Deine Frage, aber vielleicht hilft's weiter...

Gruß

piet

Bezug
        
Bezug
Simplex: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 29.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]