Signumfunktion Funktionsschar < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:38 Mo 28.04.2008 | Autor: | Lukasto |
Aufgabe | Die Aufgabe wurde gelöst, aber ich komme mit der Signumfunktion f´ nicht klar. Hier die 1. Ableitung der Funktion:
f´k(x)= [mm] -\bruch{1}{27k^{3}} (4x^{3}-24kx^{2}+36k^{2}x) [/mm] |
Die Nullstellen der 1. Ableitung sind 3k (doppelte Nullstelle) und 0.
Mit der Signumfunktion von f´ soll nun der Verlauf des Graphen dargestellt werden.
Dazu wird einmal k<0 und einmal k>0 betrachtet. Woher weiß ich nun aber ob der Graph steigt oder fällt? Komme mit den Vorzeichenwechseln nicht klar. Muss hier nur die höchste Potenz betrachtet werden?
Danke vorab für eure Hilfe!
Gruß
Lukasto
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:16 Mo 28.04.2008 | Autor: | leduart |
Hallo
Was du die Signumfunktion von f' nennst soll wohl einfach nur sagen, wo f'>0 ist, also f steigt und f'<0 also f fällt.
dazu musst du nur die Funktion f' links und rechts von der Nullstelle x=0 ansehen, denn nur bei einer einfachen Nullstelle wechselt eine fkt ihr Vorzeichen.
f´k(x)= $ [mm] -\bruch{1}{27k^{3}} (4x^{3}-24kx^{2}+36k^{2}x) [/mm] $
1.K>0 [mm] f'=-\bruch{1}{27k^{3}}*x*(4x^2-24kx+36k^2)
[/mm]
die hintere Klammer ist wegen der [mm] 36k^2 [/mm] für x in der nähe von 0 positiv, [mm] -\bruch{1}{27k^{3}} [/mm] negativ. also [mm] -\bruch{1}{27k^{3}}*(4x^2-24kx+36k^2) [/mm] insgesamt negativ auf jedenfall in der Nähe von x=0, jetzt x<0 das ganze ist positiv, x>0 das ganze ist negativ.
also ist für alle x<0 f'positiv, die fkt f selbst steigend, für alle x>0 ist f'<0 die Funktion also fallend. (wäre x=k ne einfache Nullstelle müsstest du da auch noch untersuchen, aber da sie doppelt ist bleibt f' da negativ.)( du kannst die hintere Klammer auch als [mm] 4*(x-3k)^2 [/mm] schreiben, dann siehst du dass sie immer pos. ist, ausser für x=3k
jetzt machst du dasselbe für k<0
Gruss leduart
|
|
|
|