matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsSignifikanztest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik/Hypothesentests" - Signifikanztest
Signifikanztest < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signifikanztest: hypothesentest
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:12 So 11.01.2009
Autor: thoreaunm

Aufgabe 1
Kann man die Behauptung des Großhändlers auf dem gewählten Signifikanuniveau ablehnen?

Aufgabe 2
Kann er die Behauotung des Großhändlers auf dem gewählten Signifikanuniveau ablehnen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Aufgabe 3
Ich habe ein paar probleme mit dieser AUfgabe, dennich bin mir nie sicher was H1 und Ho ist
und bei der frage versteh ich es garnicht
also
Der Großhändler behauptet, dass höchstens 20% seiner mit Erdbeeren gefüllten Schalen Untergewicht haben (Ho:p /ge 0,2). Ein Einzelhändler prüft darauf 50 Schalen und findet 14 mit zu geringem Gewicht. Durch das Ergebnis inspiriert, beschliesst er mit der Entscheidungsregel: [mm] X\le [/mm] 13 Entscheidung für Ho abzulehnen, falls der alpha-Fehler bei dieser Entscheidungsregel unter 5%(unter 15%) liegt. Kann er die Behauotung des Großhändlers auf dem gewählten Signifikanuniveau ablehnen?



        
Bezug
Signifikanztest: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Di 13.01.2009
Autor: Al-Chwarizmi


>  Ich habe ein paar probleme mit dieser AUfgabe, dennich bin
> mir nie sicher was H1 und Ho ist
>  und bei der frage versteh ich es garnicht

Was die Nullhypothese sein soll, muss festgelegt werden.
Im vorliegenden Fall, wo eine Garantieaussage gemacht
wurde, ist es sinnvoll, die Erfüllung dieser Garantie als
Nullhypothese zu setzen, also:  

        $\ [mm] H_0:\ p=P(Untergewicht)\le{0.2}$ [/mm]

[mm] H_1 [/mm] ist die Negation von [mm] H_0. [/mm] Hier also: $\ [mm] H_1:\ [/mm] p>0.2$

Die Frage lautet ja auch: "Kann der Einzelhändler die
Behauptung des Großhändlers auf dem gewählten
Signifikanzniveau ablehnen?"



Nun zuerst mal die "geflickte" Aufgabenstellung, wie man
sie unter den vorliegenden Bedingungen formulieren kann:

Aufgabe
Der Großhändler behauptet, dass höchstens 20% seiner mit
Erdbeeren gefüllten Schalen Untergewicht haben (Ho: p [mm] \le [/mm] 0.2).
Ein Einzelhändler prüft darauf 50 Schalen und findet
14 mit zu geringem Gewicht. Durch das Ergebnis inspiriert,
beschliesst er mit der Entscheidungsregel: [mm]X\le[/mm] 13
die Nullhypothese Ho zu akzeptieren, falls der [mm] \alpha-Fehler [/mm] bei
dieser Entscheidungsregel unter 5%(unter 15%) liegt. Kann
er die Behauptung des Großhändlers auf dem gewählten
Signifikanzniveau ablehnen?


(gegenüber der ursprünglichen Aufgabe deutlich verändert !)


Nun einmal die Berechnung zum Fall [mm] $\alpha\,=\,5$% [/mm] $\ [mm] =\,0.05$: [/mm]

Es ist n=50 und [mm] p_{0}=0.2 [/mm]

Die Wahrscheinlichkeit, dass unter der Voraussetzung
p=0.2 (nach Garantieaussage maximal noch tolerier-
barer Anteil untergewichtiger Schalen) höchstens 13
von 50 Schalen untergewichtig sind, ist:

        binomcdf(50,0.2,13)= 0.8894

Da dies deutlich unter [mm] 0.95=1-\alpha [/mm] liegt, kann der
Detaillist die Behauptung des Grossisten auf diesem
Signifikanzniveau nicht widerlegen. Bei dem weniger
strengen Signifikanzniveau mit [mm] \alpha=0.15 [/mm] kann er aber
weiterhin behaupten, der Grossist erfülle seine Aus-
sage nicht.

LG  Al-Chwarizmi


  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]