matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteSignatur einer Matrizdifferenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Signatur einer Matrizdifferenz
Signatur einer Matrizdifferenz < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signatur einer Matrizdifferenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:00 Mi 03.08.2011
Autor: S1lverh4nd

Aufgabe
Beweisen Sie:

Sei $A [mm] \in \mR^{m\times n}$ [/mm] und $B [mm] \in \mR^{k\times n}$. [/mm] Dann hat [mm] $A^{\top}A-B^{\top}B$ [/mm] höchstens $m$ positive und höchstens $k$ negative Eigenwerte.

Hallo,

dies ist meine erst Frage in diesem Forum, jedoch habe ich in der Vergangenheit hier schon einige nützliche Sachen erfahren und hoffe, ihr könnt mir auch diesmal helfen. Ich möchte den obigen Satz beweisen und habe hierfür auch schon im []Matheplanet nachgefragt. Da mich der Beweis jetzt aber schon sehr lange beschäftigt, suche ich auch hier nach Hilfe.

Dort wurde mir vorgeschlagen, folgende Gleichung zu untersuchen:

[mm] \begin{pmatrix}I & B^{\top}\\0&I\end{pmatrix}\begin{pmatrix}A^{\top}A-B^{\top}B & 0\\0&I\end{pmatrix}\begin{pmatrix}I & 0\\B&I\end{pmatrix} [/mm] = [mm] \begin{pmatrix}A^{\top}A & B^{\top}\\B&I\end{pmatrix} [/mm]

Ich habe festgestellt, dass

[mm] \begin{pmatrix}I & B^{\top}\\0&I\end{pmatrix} [/mm] und [mm] \begin{pmatrix}I & 0\\B&I\end{pmatrix} [/mm]

jeweils die Signatur (k+n, 0) besitzen und daher

[mm] \begin{pmatrix}A^{\top}A-B^{\top}B & 0\\0&I\end{pmatrix} [/mm] und [mm] \begin{pmatrix}A^{\top}A & B^{\top}\\B&I\end{pmatrix} [/mm]

beide die gleiche Signatur (x, y) besitzen müssen. Ich suche nun nach einer Abschätzung (x,y) [mm] \leq [/mm] (m+k, k). Hierfür sollte ich konsequenterweise die hintere Matrix benutzen, doch drehe ich mich dabei seit drei Tagen im Kreis. Ich bin daher für jede Hilfe sehr dankbar.

Grüße
Silverhand


(P.S.: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: []Matheplanet )

        
Bezug
Signatur einer Matrizdifferenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 08.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]