matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSigma berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Sigma berechnen
Sigma berechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma berechnen: bitte Korrektur lesen
Status: (Frage) beantwortet Status 
Datum: 18:38 Mi 09.04.2008
Autor: Nette20

Aufgabe
Es sei [mm] \varepsilon=\{\{1,2,3,4\},\{2\},\{1,4,5\}\} [/mm] . Konstruiere [mm] \sigma(\varepsilon). [/mm]

Hallöchen!
Ich habe dazu folgendes gelöst. Ich würde mich freuen, wenn das jemand korrektur lesen würde.

Ich muss die Schnitte, die Vereinigungen und die Komplemente der Mengen aufstellen. Dazu die leere Menge und alle.

[mm] A=\{1,2,3,4\} [/mm]
[mm] B=\{2\} [/mm]
[mm] C=\{1,4,5\} [/mm]

Schnitte
[mm] A\cap B=\{2\} [/mm]
[mm] A\cap C=\{1,4\} [/mm]
[mm] B\cap C=\emptyset [/mm]

Vereinigungen:
[mm] A\cup B=\{1,2,3,4\} [/mm]
[mm] A\cup C=\{1,2,3,4,5\} [/mm]
[mm] B\cup C=\{1,2,4,5\} [/mm]

Komplemente:
[mm] (A\cap B)^C=\{1,3,4\} [/mm]
[mm] (A\cap C)^C=\{2,3\} [/mm]
[mm] (B\cap C)^C=\{1,2,3,4,5\} [/mm]

[mm] \sigma(\varepsilon)=(\emptyset,\{2\},\{1,4\},\{1,2,3,4\},\{1,2,3,4,5\},\{1,2,4,5\},\{1,3,4\},\{2,3\},\varepsilon) [/mm]

Richtig???
Vielen Dank!

        
Bezug
Sigma berechnen: Unvollständig
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 09.04.2008
Autor: subclasser

Hallo Nette!

Das kann leider so noch nicht stimmen, denn deine Antwort ist keine Sigma-Algebra: {2}, {1, 4} sind z.B. Elemente deiner Lösung, ihre Vereinigung aber nicht.

Gruß!

Bezug
                
Bezug
Sigma berechnen: ohne Ende
Status: (Frage) beantwortet Status 
Datum: 23:22 Mi 09.04.2008
Autor: Nette20

Hi!
Danke für Deine Antwort!

Das nimmt dann ja gar kein Ende.

Nehmen wir an, dass
{1,4}=D
{1,2,3,4,5}=E

Dann muss ich also Schnitt, Vereinigung und Komplement von A und B und C und E mit D. Und auch Schnitt, Vereinigung und Komplement von A und B und C und D mit E. usw???

Das ist ja unheimlich viel. Zwar tauchen viele Mengen doppelt auf aber trotzdem.

Geht das nicht auch einfacher?
Vielen Dank!
Janett

Bezug
                        
Bezug
Sigma berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Do 10.04.2008
Autor: Zneques

Hallo,

> Geht das nicht auch einfacher?

Grundsätzlich erstmal : Nein.

Jedoch läßt sich mit einem genauerem Blick erkennen, dass 1 und 4 nur im Doppelpack auftauchen. D.h. es wird keine Menge mit 1, aber ohne die 4 geben. (bzw. mit 4 ohne 1)
Weiterhin kann man [mm] \{1,4\}, \{2\}, \{3\}, \{5\} [/mm] erzeugen. Was heißt das ?


Ciao.

Bezug
                                
Bezug
Sigma berechnen: nächster Versuch
Status: (Frage) beantwortet Status 
Datum: 09:55 Do 10.04.2008
Autor: Nette20

Hallo!

puhhhh. Hoffe, dass ich jetzt alle Möglichkeiten durch habe.

Mein Ergebnis:

Sigma( [mm] \varepsilon) [/mm] = ( [mm] \emptyset, [/mm] {1,2,3,4}, {2}, {1,4,5}, {1,4}, {1,2,3,4,5}, {1,2,4,5}, {1,3,4}, {2,3}, {1,2,4}, {5}, {2,3,5}, {2,5}, {3}, {1,3,4,5}, {3,5}, [mm] \varepsilon [/mm] )

Noch eine kleine Frage: Ist die Schreibweise (Klammern und Art der Klammern) so richtig?

Danke!
Janett

Bezug
                                        
Bezug
Sigma berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Do 10.04.2008
Autor: Zneques


> Sigma( $ [mm] \varepsilon) [/mm] $ = ( $ [mm] \emptyset, [/mm] $ {1,2,3,4}, {2}, {1,4,5}, {1,4}, {1,2,3,4,5}, {1,2,4,5}, {1,3,4}, {2,3}, {1,2,4}, {5}, {2,3,5}, {2,5}, {3}, {1,3,4,5}, {3,5}, [mm] \red{\varepsilon} [/mm] )

Das was du meinst ist sicher [mm] \Omega. [/mm] Also die Menge, die aus allen möglichen Elementen besteht. Das wäre aber [mm] \Omega=\{1,2,3,4,5\}, [/mm] und diese ist schon in deiner Aufzählung.

> Noch eine kleine Frage: Ist die Schreibweise (Klammern und Art der Klammern) so richtig?

Nein. Die Sigmaalgebra ist eine Menge, genauso wie die einzelnen Teile.
Du musst somit jeweils [mm] \{\} [/mm] benutzen.
[mm] \{ \emptyset, \{1,2,3,4\}, \{2\}, ... \} [/mm]

Ciao.

Bezug
                                                
Bezug
Sigma berechnen: Version 3
Status: (Frage) beantwortet Status 
Datum: 16:21 Do 10.04.2008
Autor: Nette20

Hi!
Also wenn ich [mm] \varepsilon [/mm] gegen [mm] \Omega [/mm] austausche, die () gegen {} tausche und {1,2,3,4,5} in der Auflistung streiche, ist es richtig?
Danke für Deine Hilfe!
Janett

Bezug
                                                        
Bezug
Sigma berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Do 10.04.2008
Autor: Zneques

Dann stimmt das alles.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]