matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSigma-endliche Maßräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Sigma-endliche Maßräume
Sigma-endliche Maßräume < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-endliche Maßräume: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:01 Do 26.07.2007
Autor: Rhinotank

Guten Abend und vielen Dank für eure Mühe im voraus!
Ich habe folgendes Problem:
Die Definitionen von einem endlichen Maßen und einem sigma-endlichen Maß sind mir bekannt.

Ist µ ein Maß und gilt [mm] µ(\omega)< \infty [/mm] so spricht man von einem endlichen Maß;
Ex. eine Folge [mm] (A_n)n\in\IN, [/mm] deren Glieder alle in der zugehörigen Sigma-Algebra [mm] \mathcal{A} [/mm] liegen und gilt zusätzlich, dass [mm] A_n [/mm] aufsteigend stetig gegen [mm] \omega [/mm] ist und [mm] µ(A_n)<\infty [/mm] so heißt das Maß µ sigma-endlich.

So viel zunächst zu den Definitionen.
Jetzt gilt offenbar, dass jedes endliche Maß ein sigma-endliches Maß ist.
Dies scheint mir auch klar zu sein, denn wenn [mm] µ(\omega)<\infty [/mm] sein soll und es eine Folge [mm] A_n [/mm] gibt die aufsteigend stetig gegen [mm] \omega [/mm] ist, dann muss nach logischer Konsequenz ja auch [mm] µ(A_n)<\infty [/mm] sein.

Warum aber gilt nicht die Umkehrung, dass nicht jedes sigma-endliches Maß kein endliches Maß ist?
Da [mm] A_n [/mm] aufsteigend stetig gegen [mm] \omega [/mm] ist heißt dass doch, dass:
[mm] \limes_{n\rightarrow\infty} \bigcup_{i=1}^{n} A_n [/mm] = [mm] \omega [/mm] ist, wobei A1 [mm] \subset [/mm] A2 [mm] \subset [/mm] ...
Dementsprechend muss doch das größtmögliche [mm] A_n, [/mm] in dem alle anderen liegen, auch Omega entsprechen und dann gilt: [mm] µ(\omega) [/mm] = µ( [mm] \limes_{n\rightarrow\infty} \bigcup_{i=1}^{n} A_n [/mm] ) < [mm] \infty [/mm]
Also ist das auch erfüllt.

Wo ist denn mein Fehler?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Gruß

        
Bezug
Sigma-endliche Maßräume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Do 26.07.2007
Autor: SEcki


>  Dies scheint mir auch klar zu sein, denn wenn
> [mm]µ(\omega)<\infty[/mm] sein soll und es eine Folge [mm]A_n[/mm] gibt die
> aufsteigend stetig gegen [mm]\omega[/mm] ist, dann muss nach
> logischer Konsequenz ja auch [mm]µ(A_n)<\infty[/mm] sein.

Naja, setze [m]A_n=\omega[/m] für alle n ...

> Warum aber gilt nicht die Umkehrung, dass nicht jedes
> sigma-endliches Maß kein endliches Maß ist?

Du meinst - jedes sigma-endliche Maß ist ein endliches?

>  Da [mm]A_n[/mm] aufsteigend stetig gegen [mm]\omega[/mm] ist heißt dass
> doch, dass:
>  [mm]\limes_{n\rightarrow\infty} \bigcup_{i=1}^{n} A_n[/mm] = [mm]\omega[/mm]
> ist, wobei A1 [mm]\subset[/mm] A2 [mm]\subset[/mm] ...
>  Dementsprechend muss doch das größtmögliche [mm]A_n,[/mm] in dem
> alle anderen liegen, auch Omega entsprechen und dann gilt:

Aha, so eins gibt es also? So eins gibt es eben nicht! Betrachte auf den rellen Zahlen mal [m][-n,n][/m]

> [mm]µ(\omega)[/mm] = µ( [mm]\limes_{n\rightarrow\infty} \bigcup_{i=1}^{n} A_n[/mm]
> ) < [mm]\infty[/mm]
>  Also ist das auch erfüllt.

Was erfüllt? Ich seh da nichts ...

SEcki

Bezug
                
Bezug
Sigma-endliche Maßräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Do 26.07.2007
Autor: Rhinotank

Ok, dass es ein solches A nicht gibt ist mir klar.
Nur verstehe ich noch immer eins nicht:

Es gilt  [mm] \limes_{n\rightarrow\infty} \bigcup_{i=1}^{n} A_n [/mm] = [mm] \Omega [/mm] und [mm] A_1 \subset A_2 \subset [/mm] ...

Wenn für alle [mm] A_n [/mm] die Eigenschaft [mm] µ(A_n)<\infty [/mm] gilt und man vereinigt also alle Mengen [mm] A_i, [/mm] i [mm] \in\IN [/mm] umd [mm] (=\Omega), [/mm] dann ist dieses Ergebnis doch auch [mm] <\infty [/mm]

Danke!

Bezug
                        
Bezug
Sigma-endliche Maßräume: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Do 26.07.2007
Autor: Blech


> Ok, dass es ein solches A nicht gibt ist mir klar.
>  Nur verstehe ich noch immer eins nicht:
>  
> Es gilt  [mm]\limes_{n\rightarrow\infty} \bigcup_{i=1}^{n} A_n[/mm]
> = [mm]\Omega[/mm] und [mm]A_1 \subset A_2 \subset[/mm] ...
>  
> Wenn für alle [mm]A_n[/mm] die Eigenschaft [mm]µ(A_n)<\infty[/mm] gilt und
> man vereinigt also alle Mengen [mm]A_i,[/mm] i [mm]\in\IN[/mm] umd [mm](=\Omega),[/mm]
> dann ist dieses Ergebnis doch auch [mm]<\infty[/mm]
>  
> Danke!

Wenn du im Zusammenhang mit Maßen irgendwo das [mm]\sigma[/mm] siehst, dann bezieht es sich fast immer darauf, daß irgendwas auch für abzählbar unendliche Sachen gilt.

Etwas, das für endliche Vereinigungen (oder was auch immer) gilt, muß nicht für den Grenzwert gelten.
[mm]M:=\{[a,b] |\ a,b \in \mathbb{R}\}[/mm] ist die Menge der abgeschlossenen Intervalle, damit sind alle [mm]\bigcup_{i=1}^{n} A_i \quad A_i \in M[/mm] abgeschlossen. Aber z.B. ist [mm]\limes_{n\rightarrow\infty}\bigcup_{i=1}^{n}[1/n,1-1/n] = (0,1)[/mm] offen (oder schau dir auch das Beispiel mit [-n,n] aus der anderen Antwort an).

Wenn du also ein Maß hast, das von sowas betroffen wäre, könnte es sehr wohl nicht [mm] \sigma [/mm] endlich sein.
Der Hauptpunkt ist: Nur weil etwas für endliche Vereinigungen gilt, muß es noch lange nicht für abzählbar unendliche gelten ( z.B. sonst wären Algebra  und [mm] \sigma-Algebra [/mm] ja das gleiche)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]