matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSigma-Algebra der einpunktigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Sigma-Algebra der einpunktigen
Sigma-Algebra der einpunktigen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Algebra der einpunktigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 So 12.09.2004
Autor: Andrea

Folgende Aufgabe bekomme ich nicht korrekt gelöst. Vielleicht hat von euch einer eine Idee.

"Gegeben sei die Grundmenge [mm] \Omega [/mm] = [mm] IR[/mm]. Man bestimme die kleinste [mm]\sigma[/mm]-Algebra A über [mm]\Omega[/mm], die alle einpunktigen Mengen [mm]\left\{x\right\} \in \IR [/mm] enthält."

Ich habe diese Frage noch in keinem anderen Forum gestellt.

        
Bezug
Sigma-Algebra der einpunktigen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 So 12.09.2004
Autor: andreas

hi Andrea

wenn man dabei konstruktiv vorgehen will, muss [mm] $\Omega$ [/mm] alle ein-punkt mengen enthalten, wegen der [mm] $\sigma$-additivität [/mm] dann auch alle abzählbaren mengen. darüberhinaus - wegen der abgeschlossenheit bezüglich der komplementbildung auch alle mengen deren komplement abzählbar ist. und das war es dann glaube ich auch schon.

also müsste [mm] $\Omega$ [/mm] in etwa so aussehen:
[m] \Omega := \{ A \subset \mathbb{R}: A \text{ ist höchstens abzählbar oder } \mathbb{R} \setminus A \text{ ist höchstens abzählbar} \} [/m]


wobei "höchstens abzählbar" abzählbar unendlich oder endlich heißt (insbesondere ist auch die leere menge [mm] $\emptyset$ [/mm] endlich).

um zu zeigen, dass es sich dabei um eine [mm] $\sigma$-algebra [/mm] handelt muss du nur die (3 ?) axiome nachprüfen, was meiner meinueng nach mit dem wissen, dass die abzählbare vereinigung abzählbarer mengen wieder eine abzählbare menge ist nicht so schwer sein sollte.
dass [mm] $\Omega$ [/mm] die kleinste [mm] $\sigma$-algebra [/mm] ist, die alle ein-punkt mengen enthält ist nach konstruktion klar.

schau mal, ob du damit schon mit der aufgabe fertig wirst, sonst frage einfach nochmal nach.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]