matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSigma-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Sigma-Algebra
Sigma-Algebra < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Algebra: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 13:36 Do 18.04.2013
Autor: WhiteKalia

Aufgabe
Sei [mm] $(\Omega, \mathcal [/mm] F)$ ein messbarer Raum und [mm] B\subset \Omega, B\not= \emptyset, [/mm] aber nicht unbedingt [mm] $B\in \mathcal [/mm] F$. Zeigen Sie, dass die [mm] $Spur-\sigma-Algebra$ \mathcal{F_B} [/mm] von [mm] $\mathcal [/mm] F$ bzgl. B
          [mm] $\mathcal{F_B} [/mm] := [mm] \mathcal{F} \cap [/mm] B := [mm] \{A \cap B : A \in \mathcal{F}\}$ [/mm]
eine [mm] \sigma-Algebra [/mm] (auf der Grundmenge B) ist.

Hallo,
also ich habe mit der Definition von [mm] $\sigma- [/mm] Algebra$ bzw eigentlich mehr mit deren Anwendung ein paar Probleme.
Allgemein ist doch eine [mm] \sigma- [/mm] Algebra so definiert:
Sei ein Mengensystem [mm] $\mathcal{F} \subseteq P(\Omega)$. [/mm] Dann ist eine [mm] \sigma- [/mm] Algebra wie folgt definiert:
1.) [mm] $\Omega \in \mathcal{F}$ [/mm]
2.) $A [mm] \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ [/mm]
3.) [mm] $(A_n)_{n \in \IN} \subseteq \mathcal{F} \Rightarrow \bigcap_{n \in \IN} A_n \subseteq \mathcal{F}$ [/mm]

So, jetzt muss ich das ganze Ding auf meine Aufgabe anwenden. Wäre das dann so richtig? Und wenn nein, warum nicht.^^

z.z.
1.)$B [mm] \in \mathcal{F_B}$ [/mm]
2.)$C [mm] \in \mathcal{F_B} \Rightarrow C^c \in \mathcal{F_B}$ [/mm]
[mm] 3.)$(C_n)_{n \in \IN} \subseteq \mathcal{F_B} \Rightarrow \bigcap_{n \in \IN}C_n \subseteq \mathcal{F_B}$ [/mm]

Danke.

lg
Kalia

        
Bezug
Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Do 18.04.2013
Autor: fred97


> Sei [mm](\Omega, \mathcal F)[/mm] ein messbarer Raum und [mm]B\subset \Omega, B\not= \emptyset,[/mm]
> aber nicht unbedingt [mm]B\in \mathcal F[/mm]. Zeigen Sie, dass die
> [mm]Spur-\sigma-Algebra[/mm] [mm]\mathcal{F_B}[/mm] von [mm]\mathcal F[/mm] bzgl. B
>            [mm]\mathcal{F_B} := \mathcal{F} \cap B := \{A \cap B : A \in \mathcal{F}\}[/mm]
>  
> eine [mm]\sigma-Algebra[/mm] (auf der Grundmenge B) ist.
>  Hallo,
>  also ich habe mit der Definition von [mm]\sigma- Algebra[/mm] bzw
> eigentlich mehr mit deren Anwendung ein paar Probleme.
>  Allgemein ist doch eine [mm]\sigma-[/mm] Algebra so definiert:
>  Sei ein Mengensystem [mm]\mathcal{F} \subseteq P(\Omega)[/mm]. Dann
> ist eine [mm]\sigma-[/mm] Algebra wie folgt definiert:
>  1.) [mm]\Omega \in \mathcal{F}[/mm]
>  2.) [mm]A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}[/mm]
>  
> 3.) [mm](A_n)_{n \in \IN} \subseteq \mathcal{F} \Rightarrow \bigcap_{n \in \IN} A_n \subseteq \mathcal{F}[/mm]
>  
> So, jetzt muss ich das ganze Ding auf meine Aufgabe
> anwenden. Wäre das dann so richtig? Und wenn nein, warum
> nicht.^^
>  
> z.z.
>  1.)[mm]B \in \mathcal{F_B}[/mm]
>  2.)[mm]C \in \mathcal{F_B} \Rightarrow C^c \in \mathcal{F_B}[/mm]
>  
> 3.)[mm](C_n)_{n \in \IN} \subseteq \mathcal{F_B} \Rightarrow \bigcap_{n \in \IN}C_n \subseteq \mathcal{F_B}[/mm]

Ja, diese 3 Punkte mußt Du zeigen

FRED

>  
> Danke.
>  
> lg
> Kalia


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]