matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSigma-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Sigma-Algebra
Sigma-Algebra < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Algebra: Begriffserklärung
Status: (Frage) beantwortet Status 
Datum: 16:21 Sa 25.10.2014
Autor: zahlenfreund

Aufgabe
Gegeben sei die Menge Ω = {1, 2, 3}. Betrachten Sie die folgenden Mengensysteme S1, S2, S3, S4 auf Ω
und beurteilen Sie jeweils, ob diese stabil bezüglich ∪ und ∩ sind:
S1 = {{1}, {2}, {3}}
S2 = {{1}, {1, 2}}
S3 = {∅, Ω, {1}}
S4 = {{2}, {3}, {2, 3}}
Welche dieser Mengensysteme bilden eine σ-Algebra auf Ω? Wie kann man die Mengensysteme gegebenfalls erweitern, um jeweils eine σ-Algebra zu erhalten?

Hallo Zusammen,

Was ist unter dem Wort stabil zu verstehen in dem Kontext der Aufgabe?

beste Grüße zahlenfreund

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Sa 25.10.2014
Autor: Thomas_Aut

Hallo,

Lies dir dochmal die Definition einer [mm] \sigma-Algebra [/mm] durch :) Dann siehst du sicher sofort was stabil(bzgl Vereinigung und Durchschnitt) in diesem Kontext meint.

Gruß Thomas

Bezug
        
Bezug
Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Sa 25.10.2014
Autor: tobit09

Hallo zahlenfreund!


> Gegeben sei die Menge Ω = {1, 2, 3}. Betrachten Sie die
> folgenden Mengensysteme S1, S2, S3, S4 auf Ω
>  und beurteilen Sie jeweils, ob diese stabil bezüglich ∪
> und ∩ sind:


> Was ist unter dem Wort stabil zu verstehen in dem Kontext
> der Aufgabe?

Ein Mengensystem [mm] $S\subseteq\mathcal{P}(\Omega)$ [/mm] heißt stabil bezüglich [mm] $\cup$ [/mm] (bzw. [mm] $\cap$), [/mm] falls für alle [mm] $A,B\in [/mm] S$ auch [mm] $A\cup B\in [/mm] S$ (bzw. [mm] $A\cap B\in [/mm] S$) gilt.


Viele Grüße
Tobias

Bezug
                
Bezug
Sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 So 26.10.2014
Autor: zahlenfreund

Vielen Dank für eure Antworten. Demnach sind S1 und S4 nicht stabil und S2 und S3 stabil.

Mit freundlichen Grüßen zahlenfreund

Bezug
                        
Bezug
Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 So 26.10.2014
Autor: DieAcht

Hallo zahlenfreund und [willkommenmr]!


> Demnach sind S1 und S4 nicht stabil und S2 und S3 stabil.

Du musst genauer arbeiten: Stabil bezüglich welcher Mengenoperation?


Gruß
DieAcht


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]