matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieSigma-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Sigma-Algebra
Sigma-Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Algebra: Mengendifferenz
Status: (Frage) beantwortet Status 
Datum: 16:05 Do 16.10.2014
Autor: YuSul

Aufgabe
Sei [mm] $\mathcal{F}$ [/mm] eine [mm] $\sigma$-Algebra [/mm] über [mm] $\Omega\neq\emptyset$. [/mm]

Folgern Sie mit den Axiomen einer [mm] $\sigma$-Algebra: [/mm]

[mm] I)$\emptyset\in [/mm] F$

II) [mm] $A,B\in F\Rightarrow A\cap [/mm] B, [mm] A\Delta [/mm] B, [mm] A\setminus [/mm] B$ sind in $F$

III) [mm] $A_1, A_2, ...\in F\Rightarrow \cap_{n\in\mathbb{N}}A_n\in [/mm] F$


Hi,

ich habe ein kleines Problem mit dieser Aufgabe.

I) war ganz leicht. Auch III) sollte ich hinbekommen haben.

So wie ich das sehe benötige ich für die Aussage über [mm] $A\Delta B=(A\setminus B)\cup (B\setminus [/mm] A)$ zu erst, dass auch [mm] $A\setminus [/mm] B$ ist. Wenn ich das annehme kann ich es eigentlich recht leicht folgern.
Wo ich jedoch Probleme habe ist zu zeigen, dass

Wenn $A, [mm] B\in F\Rightarrow A\setminus B\in [/mm] F$

Also wenn $A$ und $B [mm] \in [/mm] F$ dann ist auch das jeweilige Komplement in F. Das man dies benötigt ist eigentlich klar, denn nur so bekommt man die Mengendifferenz ins Spiel. Allerdings weiß ich nicht so recht wie ich nun erreiche, dass ich [mm] $A\setminus [/mm] B$ habe.

Danke.

        
Bezug
Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Do 16.10.2014
Autor: luis52

Moin, [mm] $A\setminus B=A\cap\overline{B}$ [/mm] ...

Bezug
                
Bezug
Sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Do 16.10.2014
Autor: YuSul

Okay, also da [mm] $B\in [/mm] F$ ist auch [mm] $B^c\in [/mm] F$ und da wir ja schon wissen, dass der Schnitt von zwei Mengen wieder in der Sigma Algebra liegen ist dann auch

[mm] $A\cap B^c=A\cap(\Omega\setminus B)\in [/mm] F$

Somit [mm] $A\setminus B\in [/mm] F$

Dann hätte ich nun noch die Frage ob mein Beweis für [mm] $A\Delta [/mm] B$ korrekt ist.

Ich habe III) mit dem demorganschen Gesetz gefolgert. Das ist richtig, oder?

Bezug
                        
Bezug
Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Do 16.10.2014
Autor: luis52


> Dann hätte ich nun noch die Frage ob mein Beweis für
> [mm]A\Delta B[/mm] korrekt ist.
>
> Ich habe III) mit dem demorganschen Gesetz gefolgert. Das
> ist richtig, oder?

[ok]

Bezug
                                
Bezug
Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Do 16.10.2014
Autor: YuSul

Danke für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]