matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNetzwerkeShannon
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Netzwerke" - Shannon
Shannon < Netzwerke < Praktische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Netzwerke"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Shannon: Entropie
Status: (Frage) überfällig Status 
Datum: 14:13 Mo 08.12.2008
Autor: DAB268

Aufgabe
Eine Informationsquelle sende sechs Zeichen A, B, C, D, E und F mit folgender Auftrittswahrscheinlichkeit aus: A 10%, B 5%, C 40%, D 20%, E 5%, F 20%. Dabei sei jedes Sendeereignis vom vorherigen unabhängig.
(a) Berechnen Sie Entropie, relative Entropie und Redundanz dieser Informationsquelle (nutzen Sie dabei die Werte log2(10)=3,32 und log2(6)=2,58).
(b) Kodieren Sie die Symbole nach der Methode von Fano (es gibt dabei mehrere Möglichkeiten, die gleichwertig sind). Berechnen Sie die zugehörige durchschnittliche Bitlänge pro Symbol.
(c) Wieso bleibt die durchschnittliche Bitlänge aus (b) etwas über dem Idealwert der Entropie aus (a)?

Hallo.

Hier meine Lösungen. Bitte schaut mal ob diese korrekt sind:

(a)
H = [mm] -\bruch{1}{10} \cdot log_2 \bruch{1}{10} [/mm] - [mm] \bruch{1}{20} \cdot log_2 \bruch{1}{20} [/mm] - [mm] \bruch{2}{5} \cdot log_2 \bruch{2}{5} [/mm] - [mm] \bruch{2}{5} \cdot log_2 \bruch{2}{5} [/mm] - [mm] \bruch{1}{20} \cdot log_2 \bruch{1}{20} [/mm] - [mm] \bruch{2}{5} \cdot log_2 \bruch{2}{5} [/mm]
H = [mm] \bruch{log_2 10}{10} [/mm] + [mm] \bruch{2 \cdot log_2 20}{20} [/mm] + [mm] \bruch{2 \cdot log_2 5}{5} [/mm] - [mm] \bruch{2}{5} [/mm] + [mm] \bruch{2 \cdot log_2 5}{5} [/mm]
H = [mm] \bruch{10 \cdot log_2 10 + 10 \cdot log_2 20 + 80 \cdot log_2 5 - 40}{100} [/mm]
H = [mm] \bruch{10 \cdot 3,32 +10 \cdot 4,32 + 80 \cdot 2,32 - 40}{100} [/mm]
H= [mm] \bruch{33,2 + 43,2 + 185,6 -40}{100} [/mm]
H= [mm] \bruch{222}{100} [/mm] = 2,22

[mm] H_{max} [/mm] = - 6 [mm] \cdot (\bruch{1}{6} \cdot log_2 \bruch{1}{6} [/mm] = - [mm] log_2 \bruch{1}{6} [/mm] = [mm] log_2 [/mm] 6 = 2,58

[mm] H_{rel} [/mm] = [mm] \bruch{H}{H_{max}} [/mm] = [mm] \bruch{2,22}{2,58} [/mm] = 0,86

[mm] {Redundanz}=1-H_{rel} [/mm] = 1 - 0,86 = 0,14

(b)
C 0
D 10
F 110
A 1110
B 11110
E 11111

[mm] DurchschnittlicheBitlaenge=\bruch{\bruch{2}{5}+2 \cdot\bruch{1}{5} + 3 \cdot \bruch{1}{5} + 4 \cdot \bruch{1}{10} + 5 \cdot \bruch{1}{20} +5 \cdot \bruch{1}{20}}{6} [/mm] = [mm] \bruch{\bruch{7}{5} + \bruch{4}{10} + \bruch{10}{20}}{6}= \bruch{\bruch{23}{10}}{6} [/mm] = [mm] \bruch{23}{60} [/mm] = 0,38

c) Leider keine Lösung, aber ich hab mir schonmal gedacht, dass es evtl. daran liegt, dass man mit [mm] 2^3 [/mm] Bits nicht nr 6 sondern 8 Zeichen kodieren kann.

MfG
DAB268

        
Bezug
Shannon: Aufgabe a), b)
Status: (Frage) beantwortet Status 
Datum: 22:48 Mi 31.12.2008
Autor: MathePower

Hallo DAB268,


> Eine Informationsquelle sende sechs Zeichen A, B, C, D, E
> und F mit folgender Auftrittswahrscheinlichkeit aus: A 10%,
> B 5%, C 40%, D 20%, E 5%, F 20%. Dabei sei jedes
> Sendeereignis vom vorherigen unabhängig.
>  (a) Berechnen Sie Entropie, relative Entropie und
> Redundanz dieser Informationsquelle (nutzen Sie dabei die
> Werte log2(10)=3,32 und log2(6)=2,58).
>  (b) Kodieren Sie die Symbole nach der Methode von Fano (es
> gibt dabei mehrere Möglichkeiten, die gleichwertig sind).
> Berechnen Sie die zugehörige durchschnittliche Bitlänge pro
> Symbol.
>  (c) Wieso bleibt die durchschnittliche Bitlänge aus (b)
> etwas über dem Idealwert der Entropie aus (a)?
>  Hallo.
>  
> Hier meine Lösungen. Bitte schaut mal ob diese korrekt
> sind:
>  
> (a)
>  H = [mm]-\bruch{1}{10} \cdot log_2 \bruch{1}{10}[/mm] -
> [mm]\bruch{1}{20} \cdot log_2 \bruch{1}{20}[/mm] - [mm]\bruch{2}{5} \cdot log_2 \bruch{2}{5}[/mm]
> - [mm]\bruch{2}{5} \cdot log_2 \bruch{2}{5}[/mm] - [mm]\bruch{1}{20} \cdot log_2 \bruch{1}{20}[/mm]
> - [mm]\bruch{2}{5} \cdot log_2 \bruch{2}{5}[/mm]


Es muss doch so lauten:

H = [mm]-\bruch{1}{10} \cdot log_2 \bruch{1}{10} - \bruch{1}{20} \cdot log_2 \bruch{1}{20}- \bruch{2}{5} \cdot log_2 \bruch{2}{5} - \bruch{\red{1}}{5} \cdot log_2 \bruch{\red{1}}{5} - \bruch{1}{20} \cdot log_2 \bruch{1}{20} - \bruch{\red{1}}{5} \cdot log_2 \bruch{\red{1}}{5}[/mm]



>  H = [mm]\bruch{log_2 10}{10}[/mm]
> + [mm]\bruch{2 \cdot log_2 20}{20}[/mm] + [mm]\bruch{2 \cdot log_2 5}{5}[/mm]
> - [mm]\bruch{2}{5}[/mm] + [mm]\bruch{2 \cdot log_2 5}{5}[/mm]
>  H = [mm]\bruch{10 \cdot log_2 10 + 10 \cdot log_2 20 + 80 \cdot log_2 5 - 40}{100}[/mm]
>  
> H = [mm]\bruch{10 \cdot 3,32 +10 \cdot 4,32 + 80 \cdot 2,32 - 40}{100}[/mm]
>  
> H= [mm]\bruch{33,2 + 43,2 + 185,6 -40}{100}[/mm]
>  H=
> [mm]\bruch{222}{100}[/mm] = 2,22


Das Ergebnis stimmt. [ok]


>  
> [mm]H_{max}[/mm] = - 6 [mm]\cdot (\bruch{1}{6} \cdot log_2 \bruch{1}{6}[/mm]
> = - [mm]log_2 \bruch{1}{6}[/mm] = [mm]log_2[/mm] 6 = 2,58


[ok]


>  
> [mm]H_{rel}[/mm] = [mm]\bruch{H}{H_{max}}[/mm] = [mm]\bruch{2,22}{2,58}[/mm] = 0,86


[ok]


>  
> [mm]{Redundanz}=1-H_{rel}[/mm] = 1 - 0,86 = 0,14


Das ist doch die relative Redundanz.

Meines Wissens berechnet man die Redundanz einer Quelle als maximale Entropie vermindert um die Entropie der Nachrichtenquelle.

Siehe []Redundanz - Informationstheorie


>  
> (b)
>  C 0
>  D 10
>  F 110
>  A 1110
>  B 11110
>  E 11111
>  
> [mm]DurchschnittlicheBitlaenge=\bruch{\bruch{2}{5}+2 \cdot\bruch{1}{5} + 3 \cdot \bruch{1}{5} + 4 \cdot \bruch{1}{10} + 5 \cdot \bruch{1}{20} +5 \cdot \bruch{1}{20}}{6}[/mm]
> = [mm]\bruch{\bruch{7}{5} + \bruch{4}{10} + \bruch{10}{20}}{6}= \bruch{\bruch{23}{10}}{6}[/mm]
> = [mm]\bruch{23}{60}[/mm] = 0,38


Das kommt mir etwas sonderbar vor, richtig muß es heißen:

[mm]\bruch{2}{5}+2 \cdot\bruch{1}{5} + 3 \cdot \bruch{1}{5} + 4 \cdot \bruch{1}{10} + 5 \cdot \bruch{1}{20} +5 \cdot \bruch{1}{20}=\bruch{23}{10}=2,3[/mm]


>  
> c) Leider keine Lösung, aber ich hab mir schonmal gedacht,
> dass es evtl. daran liegt, dass man mit [mm]2^3[/mm] Bits nicht nr 6
> sondern 8 Zeichen kodieren kann.
>  
> MfG
>  DAB268


Gruß
MathePower

Bezug
        
Bezug
Shannon: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 08.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Netzwerke"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]