matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSeparable Erw., char K = p>0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Separable Erw., char K = p>0
Separable Erw., char K = p>0 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separable Erw., char K = p>0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Di 08.03.2011
Autor: Lippel

Aufgabe
Sei [mm] $L/K\:$ [/mm] eine Körpererweiterung in Charakteristik $p>0, [mm] \;\alpha \in [/mm] L$ algebraisch über [mm] $K\:$. [/mm] Zeigen Sie:
[mm] $\alpha$ [/mm] separabel über $K [mm] \gdw K(\alpha)=K(\alpha^p)$ [/mm]

Hallo,

ich bin mir bei der Rückrichtung des Beweises sehr unsicher.

[mm] "$\Rightarrow$" [/mm]
Zunächst gilt [mm] $K(\alpha^p) \subset K(\alpha)$, [/mm] wir betrachten die Erweiterung [mm] $K(\alpha)/K(\alpha^p)$. [/mm] Es ist [mm] $K(\alpha)/K$ [/mm] separabel, da [mm] $\alpha$ [/mm] separabel ist. Aufgrund der Transitivität der Separabilität ist dann auch [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel, da [mm] $K(\alpha^p)$ [/mm] Zwischenkörper der Erweiterung [mm] $K(\alpha)/K$ [/mm] ist.
Es gilt [mm] $f:=X^p-\alpha^p \in K(\alpha^p)[X]$ [/mm] annuliert [mm] $\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: [/mm] | [mm] \: [/mm] f$. Da wie oben gezeigt [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel ist, hat [mm] $min_{K(\alpha^p)}(\alpha)$ [/mm] nur einfache Nullstellen in einem alg. Abschluss [mm] $\overline{K}$ [/mm] von [mm] $K(\alpha)$. [/mm] Es ist aber [mm] $f=(X-\alpha)^p$ [/mm] in [mm] $K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) [/mm] = [mm] X-\alpha \Rightarrow \alpha \in \K(\alpha^p)$ [/mm] und somit [mm] $K(\alpha)=K(\alpha^p)$ [/mm]

[mm] "$\Leftarrow$" [/mm]
Ich weiß: wenn [mm] $f:=min_K(\alpha)$, [/mm] und wir nehmen an, f habe mehrfache Nullstellen, dann hat jede Nullstelle von f die Vielfachheit [mm] $p^r, [/mm] r [mm] \in \IN$ [/mm] und es gibt ein $g [mm] \in [/mm] K[X]: [mm] g(X^{p^r})=f(X)$. [/mm] Damit gibt es insbesondere ein $h [mm] \in [/mm] K[X]: [mm] h(X^p)=f(X) \Rightarrow h(\alpha^p) [/mm] = [mm] f(\alpha) [/mm] = 0 [mm] \Rightarrow min_K(\alpha^p) \: [/mm] | [mm] \: [/mm] h [mm] \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}$ [/mm] im Widerspruch zu [mm] $K(\alpha)=K(\alpha^p)$. [/mm]
Stimmt das? Irgendwie kommt es mir komisch vor.

LG Lippel

        
Bezug
Separable Erw., char K = p>0: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Di 08.03.2011
Autor: felixf

Moin!

> Sei [mm]L/K\:[/mm] eine Körpererweiterung in Charakteristik [mm]p>0, \;\alpha \in L[/mm]
> algebraisch über [mm]K\:[/mm]. Zeigen Sie:
>  [mm]\alpha[/mm] separabel über [mm]K \gdw K(\alpha)=K(\alpha^p)[/mm]
>  
> ich bin mir bei der Rückrichtung des Beweises sehr
> unsicher.
>  
> "[mm]\Rightarrow[/mm]"
>  Zunächst gilt [mm]K(\alpha^p) \subset K(\alpha)[/mm], wir
> betrachten die Erweiterung [mm]K(\alpha)/K(\alpha^p)[/mm]. Es ist
> [mm]K(\alpha)/K[/mm] separabel, da [mm]\alpha[/mm] separabel ist. Aufgrund
> der Transitivität der Separabilität ist dann auch
> [mm]K(\alpha)/K(\alpha^p)[/mm] separabel, da [mm]K(\alpha^p)[/mm]
> Zwischenkörper der Erweiterung [mm]K(\alpha)/K[/mm] ist.
>  Es gilt [mm]f:=X^p-\alpha^p \in K(\alpha^p)[X][/mm] annuliert
> [mm]\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: | \: f[/mm]. Da
> wie oben gezeigt [mm]K(\alpha)/K(\alpha^p)[/mm] separabel ist, hat
> [mm]min_{K(\alpha^p)}(\alpha)[/mm] nur einfache Nullstellen in einem
> alg. Abschluss [mm]\overline{K}[/mm] von [mm]K(\alpha)[/mm]. Es ist aber
> [mm]f=(X-\alpha)^p[/mm] in [mm]K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) = X-\alpha \Rightarrow \alpha \in \K(\alpha^p)[/mm]
> und somit [mm]K(\alpha)=K(\alpha^p)[/mm]

[ok]

> "[mm]\Leftarrow[/mm]"
>  Ich weiß: wenn [mm]f:=min_K(\alpha)[/mm], und wir nehmen an, f
> habe mehrfache Nullstellen, dann hat jede Nullstelle von f
> die Vielfachheit [mm]p^r, r \in \IN[/mm] und es gibt ein [mm]g \in K[X]: g(X^{p^r})=f(X)[/mm].
> Damit gibt es insbesondere ein [mm]h \in K[X]: h(X^p)=f(X) \Rightarrow h(\alpha^p) = f(\alpha) = 0 \Rightarrow min_K(\alpha^p) \: | \: h \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}[/mm]
> im Widerspruch zu [mm]K(\alpha)=K(\alpha^p)[/mm].
>  Stimmt das? Irgendwie kommt es mir komisch vor.

Doch, es stimmt.

LG Felix


Bezug
                
Bezug
Separable Erw., char K = p>0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 Di 08.03.2011
Autor: Lippel

Wunderbar, tausend Dank!!

LG Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]