matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSeitenhalbierende im dreick
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Seitenhalbierende im dreick
Seitenhalbierende im dreick < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Seitenhalbierende im dreick: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Sa 16.09.2006
Autor: schalkemeister06

Hallo ! Habe  ein dreieck mit den punkten A B C gegeben nun muss ich die Länge der Seitenhalbierenden berechn. Wie mache ich das ?????

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Seitenhalbierende im dreick: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Sa 16.09.2006
Autor: Sigrid

Hallo Schalkemeister06,

> Hallo ! Habe  ein dreieck mit den punkten A B C gegeben nun
> muss ich die Länge der Seitenhalbierenden berechn. Wie
> mache ich das ?????

Du Kennst die Formel für den Mittelpunkt einer Strecke [mm] \overline{AB}: [/mm]

$ [mm] x_M [/mm] = [mm] \bruch{x_A + x_B}{2} [/mm] $ und $ [mm] y_M [/mm] = [mm] \bruch{y_A + y_B}{2} [/mm] $

Jetzt kannst du die Länge der Strecke $ [mm] \overline{CM} [/mm] $ berechnen. Damit hast du die Länge der Seitenhalbierenden [mm] s_c. [/mm] Entsprechend rechnest du bei den beiden anderen Seitenhalbierenden.

Gruß
Sigrid

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Seitenhalbierende im dreick: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Sa 16.09.2006
Autor: schalkemeister06

erstma danke, aber wie kann ich jetzt die länge der strecke am berechnen?
schon ma danke im voraus !!!

Bezug
                        
Bezug
Seitenhalbierende im dreick: Koordinaten
Status: (Antwort) fertig Status 
Datum: 17:36 Sa 16.09.2006
Autor: ron

Hallo,
benötigt werden zur konkreten Bestimmung der Länge die Koordinaten der Dreieckspunkte A,B,C in [mm] \IR^2 [/mm] (x-y-Koordinatensystem: A = [mm] (x_a,y_a)) [/mm]
Dann kann die Länge [mm] \overline{AM} [/mm] = [mm] \wurzel{(x_a-x_m)^2 + (y_a-y_m)^2} [/mm] berechnet werden.
Hoffe es hilft weiter bei der Aufgabe.
Ron

Bezug
                        
Bezug
Seitenhalbierende im dreick: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Sa 16.09.2006
Autor: schalkemeister06

irgendwie verstehe ich es immer noch nich : hier mal ein beispiel :
A (-1|0)  B (2|1) C (0,5|4)   ich habe jetzt schon die steigung von AB , AC, und BC ausgerechnet : AB = 0,5|0,5
                              AC = -0,25|2
                              BC = 1,25|2,5
Was muss ich jetzt machen, wenns geht ein bsp. mit den zahlen !!!!  

Bezug
                                
Bezug
Seitenhalbierende im dreick: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 16.09.2006
Autor: Sigrid

Hallo Schalkemeister

> irgendwie verstehe ich es immer noch nich : hier mal ein
> beispiel :
>  A (-1|0)  B (2|1) C (0,5|4)   ich habe jetzt schon die
> steigung von AB , AC, und BC ausgerechnet : AB = 0,5|0,5
> AC = -0,25|2
>                                BC = 1,25|2,5

Du hast nicht die Steigung, sondern die Mittelpunkte der Seiten berechnet. Die Steigungen brauchst du auch gar nicht.

>  Was muss ich jetzt machen, wenns geht ein bsp. mit den
> zahlen !!!!    

Du weißt, dass der Mittelpunkt der Seite $ [mm] \overline{AB} [/mm] $ der Punkt $ M(0,5 | 0,5 ) $ ist. Die Seitenhalbierende [mm] s_c [/mm] ist die Verbindungsstrecke vom Punkt C zum Mittelpunkt der Seite $ [mm] \overline{AB} [/mm] $, also musst du die Entfernung vom Punkt C zu M berechnen. Das machst du mit der Formel, die dir Ron gegeben hat. Damit erhälst du:

$ [mm] |s_c| \wurzel{(0,5 - 0,5)^2 + (4 - 0,5)^2} [/mm] = [mm] \wurzel{3,5^2} [/mm] = 3,5 $,

also ist die Länge der Seitenhalbierenden [mm] s_c [/mm] 3,5 LE (Längeneinheiten).

Ist es jetzt klarer?

Gruß
Sigrid

Bezug
                                
Bezug
Seitenhalbierende im dreick: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Sa 16.09.2006
Autor: schalkemeister06

Ja jetzt ist es klar, ich meinte auch nich die steigung hab mich verschrieben, hatte das nähmlich eben schon mal mit der formel von Ron gerechnet aber da habe ich punkt A eingesetzt, aber jetzt ist alles klar  Vielen Dank !!!!
Gruß Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]