matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikSchwingungsfähige Systeme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Elektrotechnik" - Schwingungsfähige Systeme
Schwingungsfähige Systeme < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwingungsfähige Systeme: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:20 Di 13.06.2006
Autor: Siegfried

Guten morgen,

bei der Untersuchung eines Netzwerks aus mehreren komplexen Bauteilen komme ich auf folgende Gleichung für die Admittanz des Systems:

[mm] \underline{Y}(\omega)=j\omega^{3}\frac{L_{1}\left(\frac{1}{\omega_{2}^{2}}-1\right)+L_{2}\left(\frac{1}{\omega_{1}^{2}}-1\right)}{\frac{\omega^{2}}{\omega_{1}^{2}}+\frac{\omega^{2}}{\omega_{2}^{2}}-\frac{\omega^{4}}{\omega_{1}^{2}\omega_{2}^{2}}-1}+\frac{\omega^{2}}{Z_{3}-j\frac{\omega}{L_{3}}-\omega_{3}^{2}} [/mm]

Die Betragsfunktion [mm] |Y(\omega)| [/mm] hat zwei Unendlichkeitsstellen bei [mm] \omega=\omega_{1} [/mm] und [mm] \omega=\omega_{2}. [/mm] Wenn man nun an den Werten [mm] L_{1}, L_{2} [/mm] und [mm] L_{3} [/mm] ein bischen schraubt bekommt man noch ein lokales Maximum. Heisst das, dass das System an dieser Stelle ebenfalls bevorzugt schwingt?

Ich bin für jede Anregung dankbar.

Vielen Dank, Siegfried.

Ich habe diese Frage auf keiner anderen Seite gestellt.

        
Bezug
Schwingungsfähige Systeme: Schwingungsfähige Systeme
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Do 15.06.2006
Autor: Schwangerepaepstin

Hallo Siegfried,

eine kurze Frage zu deinem Problem:

Wo hat dein System die Renonanz. Ein mehrfachbedingtes Schwingen bzw. weitere lokale Maximas sind in einem komplexen System immer möglich.

Schwangerepaepstin

Bezug
                
Bezug
Schwingungsfähige Systeme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Fr 16.06.2006
Autor: Siegfried

Es schwingt vermutlich an der Stelle des Maximas.

Es sind nicht alle Parameter für alle Bauteile bekannt; ich dachte, es ist vielleicht möglich die fehlenden Parameter anhand der Gleichung zu ermitteln...

Siegfried

Bezug
        
Bezug
Schwingungsfähige Systeme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Do 22.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]