matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikSchwingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Schwingung
Schwingung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwingung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:14 Mo 01.11.2010
Autor: Kuriger

Aufgabe
Eine kleine Kugel rollt in einer gebogenen Rinne mit dem Krümmungsradius R = 0.3m. Mit welcher Schwingungsdauer pendelt sie um die Gleichgewichtslage? (Hiwneis: Beschreiben Sie die Kräfte auf die Kugel und setzten Sie diese in die Newtongleichung für eine Drehbewegung ein. Sie erhalten eine Differentialgleichung die sie lösen können. Die Radialbeschleunigung kann vernachlässigt werden





Hallo

Ich habe hier gerade so meine liebe Mühe

[Dateianhang nicht öffentlich]

Reibungskraft
[mm] F_R [/mm] = [mm] F_n [/mm] * g * [mm] \mu [/mm] = [mm] m*g*cos(\alpha) [/mm] * [mm] \mu [/mm]
Hangabtriebskraft
[mm] F_H [/mm] = [mm] m*g*sin(\alpha) [/mm]

Differentialgleichung:

J [mm] *\ddot{\varphi} [/mm] = [mm] F_H [/mm] * r - [mm] F_R [/mm] * r
J [mm] *\ddot{\varphi} [/mm] = [mm] (m*g*sin(\alpha)) [/mm] * r - [mm] (m*g*cos(\alpha) [/mm] * [mm] \mu) [/mm] * r

Bisschen was, könnte ich möglicherweise noch machen mit umformen.
J = [mm] \bruch{2}{5} [/mm] *m * [mm] r^2 [/mm]

[mm] (\bruch{2}{5} [/mm] *m * [mm] r^2) *\ddot{\varphi} [/mm] - [mm] (m*g*sin(\alpha)) [/mm] * r + [mm] (m*g*cos(\alpha) [/mm] * [mm] \mu) [/mm] * r = 0



[mm] \ddot{\varphi} [/mm] - [mm] \bruch{(m*g*sin(\alpha))}{(\bruch{2}{5} *m * r^2)} [/mm] + [mm] \bruch{(m*g*cos(\alpha) * \mu) * r}{(\bruch{2}{5} *m * r^2)} [/mm]

[mm] \ddot{\varphi} [/mm] - [mm] \bruch{(*g*sin(\alpha))}{(\bruch{2}{5} * r^2)} [/mm] + [mm] \bruch{(g*cos(\alpha) * \mu) }{(\bruch{2}{5} * r)} [/mm]

Doch was ich nun weiter machen soll, weiss ich nicht

Am Schluss sollte folgendes rauskommen:
T = [mm] 2\pi [/mm] * [mm] \wurzel{\bruch{7}{5} * \bruch{R}{g}} [/mm]

Danke für die Hilfe
Gruss Kuriger


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Schwingung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mi 03.11.2010
Autor: leduart

Hallo
Die Reibung lesse ich hier weg, es ist ja die wenn vorhanden, geringe Rollreibung.

Wo ist der Zusammenhang mit der Kreisbahn?
was ist dein [mm] \phi [/mm] und dein [mm] \alpha?, [/mm]
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]