matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenSchwerpunkt eines Dreiecks
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Schwerpunkt eines Dreiecks
Schwerpunkt eines Dreiecks < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 31.03.2010
Autor: Fawkes

Aufgabe
Gegeben sind die Punkte A(0/2/3), B(6/0/6) und C(2/5/9)
Bestimmen Sie den Schwerpunkt des Dreiecks.

Hallo,
rechne hier schon eine ganze Weile rum, komme aber nicht auf ein sinnvolles Ergebnis.
Deshalb hier mal mein Lösungsversuch:
Bestimme zuerst zwei Geraden wie folgt:
[mm] \overrightarrow{OB}+1/2\overrightarrow{BC}=\overrightarrow{OP_1} [/mm]
einsetzen:
[mm] \vektor{6 \\ 0 \\ 6}+1/2\vektor{-4 \\ 5 \\ 3}=\vektor{4 \\ 2,5 \\ 7,5} [/mm]

[mm] \overrightarrow{P_1A}: \vektor{0 \\ 2 \\ 3}-\vektor{4 \\ 2,5 \\ 7,5}=\vektor{-4 \\ -0,5 \\ -4,5} [/mm]

Daraus folgt erste Geradengleichung:
[mm] \overrightarrow{OX_1}:= \vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5} [/mm]

[mm] \overrightarrow{OA}+1/2\overrightarrow{AB}=\overrightarrow{OP_2} [/mm]
einsetzen:
[mm] \vektor{0 \\ 2 \\ 3}+1/2\vektor{6 \\ -2 \\ 3}=\vektor{3 \\ 1 \\ 4,5} [/mm]

[mm] \overrightarrow{P_2C}: \vektor{2 \\ 5 \\ 9}-\vektor{3 \\ 1 \\ 4,5}=\vektor{-1 \\ 4 \\ 4,5} [/mm]

Daraus folgt zweite Geradengleichung:
[mm] \overrightarrow{OX_2}:= \vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5} [/mm]

Jetzt:
[mm] \overrightarrow{OX_1}=\overrightarrow{OX_2} [/mm]
[mm] \gdw\vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5}=\vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5} [/mm]
[mm] \gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{3 \\ 1 \\ 4,5}-\vektor{4 \\ 2,5 \\ 7,5} [/mm]
[mm] \gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{-1 \\ -1,5 \\ -3} [/mm]

Rechnet man das nun mit einer Matrix weiter aus, so folgt ein Widerspruch in Form von:
[mm] \lambda=1/3 [/mm]
[mm] \wedge \mu=1/3 [/mm]
[mm] \wedge -4\lambda+\mu=-1 [/mm]

Kann auch gerne noch einmal meine Matrizen aufschreiben, dachte mir aber falls in meiner obigen Rechnung schon ein Fehler steckt lohnt sich das hinterher nicht so wirklich.
Wäre für Antworten dankbar.
Gruß Fawkes

        
Bezug
Schwerpunkt eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mi 31.03.2010
Autor: Sigrid

Hallo Fawkes,

Duhast alles richtig gerechnet. Die Probe stimmt doch auch. s.u.

> Gegeben sind die Punkte A(0/2/3), B(6/0/6) und C(2/5/9)
>  Bestimmen Sie den Schwerpunkt des Dreiecks.
>  Hallo,
>  rechne hier schon eine ganze Weile rum, komme aber nicht
> auf ein sinnvolles Ergebnis.
>  Deshalb hier mal mein Lösungsversuch:
>  Bestimme zuerst zwei Geraden wie folgt:
>  
> [mm]\overrightarrow{OB}+1/2\overrightarrow{BC}=\overrightarrow{OP_1}[/mm]
>  einsetzen:
>  [mm]\vektor{6 \\ 0 \\ 6}+1/2\vektor{-4 \\ 5 \\ 3}=\vektor{4 \\ 2,5 \\ 7,5}[/mm]
>  
> [mm]\overrightarrow{P_1A}: \vektor{0 \\ 2 \\ 3}-\vektor{4 \\ 2,5 \\ 7,5}=\vektor{-4 \\ -0,5 \\ -4,5}[/mm]
>  
> Daraus folgt erste Geradengleichung:
>  [mm]\overrightarrow{OX_1}:= \vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5}[/mm]
>  
> [mm]\overrightarrow{OA}+1/2\overrightarrow{AB}=\overrightarrow{OP_2}[/mm]
>  einsetzen:
>  [mm]\vektor{0 \\ 2 \\ 3}+1/2\vektor{6 \\ -2 \\ 3}=\vektor{3 \\ 1 \\ 4,5}[/mm]
>  
> [mm]\overrightarrow{P_2C}: \vektor{2 \\ 5 \\ 9}-\vektor{3 \\ 1 \\ 4,5}=\vektor{-1 \\ 4 \\ 4,5}[/mm]
>  
> Daraus folgt zweite Geradengleichung:
>  [mm]\overrightarrow{OX_2}:= \vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5}[/mm]
>  
> Jetzt:
> [mm]\overrightarrow{OX_1}=\overrightarrow{OX_2}[/mm]
> [mm]\gdw\vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5}=\vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5}[/mm]
>  
> [mm]\gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{3 \\ 1 \\ 4,5}-\vektor{4 \\ 2,5 \\ 7,5}[/mm]
>  
> [mm]\gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{-1 \\ -1,5 \\ -3}[/mm]
>  
> Rechnet man das nun mit einer Matrix weiter aus, so folgt
> ein Widerspruch in Form von:
>  [mm]\lambda=1/3[/mm]
>  [mm]\wedge \mu=1/3[/mm]
>  [mm]\wedge -4\lambda+\mu=-1[/mm]

Es gilt doch:  - 4/3 + 1/3 = - 1

Wo siehst Du da einen Widerspruch?

>  
> Kann auch gerne noch einmal meine Matrizen aufschreiben,
> dachte mir aber falls in meiner obigen Rechnung schon ein
> Fehler steckt lohnt sich das hinterher nicht so wirklich.
>  Wäre für Antworten dankbar.
>  Gruß Fawkes


Bezug
                
Bezug
Schwerpunkt eines Dreiecks: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Mi 31.03.2010
Autor: Fawkes

Danke schön!!!
:D Wie heißt es doch so schön manchmal sieht man vor lauter Bäumen den Wald nicht mehr ;)
Gruß Fawkes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]