Schwerpunkt eines Bierglases < Mechanik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein Bierglas des Durchmessers D, Höhe H und der Glasstärke s wird einseitig angehoben. Wie gross darf die Höhe h1 werden, damit das Glas nicht umkippt? |
Hallo zusammen
Ich habe im Buch Keine Panik vor Mechanik ein Beispiel das ich nicht verstehe, vor allem wird der Ansatz einfach so präsentiert und nicht Schritt für Schritt erklärt.
Ich sollte ja klarerweise für den Kippvorgang die Schwerpunktkoordinate ys haben, xs ist ja D/2.
Laut Buch lautet die Formel für ys
[mm]y_{s}= \frac{\frac{s}{2}\cdot \frac{\pi}{4}\cdot \left(D-2s\right)^{2} \cdot s + \frac{H}{2}\cdot \frac{\pi }{4}\cdot \left(D^{2}- \left(D-2s\right)^{2} \right) \cdot H}{\frac{\pi}{4}\cdot \left(D-2s\right)^{2}\cdot s+ \frac{\pi }{4}\cdot \left(D-2s\right)^{2}\cdot H}=\frac{2\cdot H^{2} }{D+ 4H} [/mm]
Ich selbst komme aber nicht auf die selbe Lösung da vor allem auch im Ansatz für ys irgendwas mit D-2s steht (das wäre die Fläche ohne der Glasstärke), in der Angabe laut Skizze ist aber der Innendurchmesser D angegeben. Demnach müsste also entweder Id=D oder Ad=D+2s verwendet werden.
Ich habe mir überlegt: Verwendung da=D, di=D-2s
Ich mache ein Gedankenexperiment
Ich fülle den Hohlraum mit einem Zylinder vom Durchmesser D-2s aus
Somit habe ich dann eine Schale, Vollzylinder und einen Innenzylinder.
[mm]V_{Koerper} = r^{2} \cdot \pi \cdot H[/mm]
[mm]V_{Koerper_{innen} } = \left(r-s\right)^{2} \cdot \pi \cdot \left(H-s\right)[/mm]
[mm]V_{Schale} = r^{2} \cdot \pi \cdot H - \left(r-s\right)^{2} \cdot \pi \cdot \left(H-s\right)[/mm]
Vschale x eschale + Vkörperinnen x ekörperinnen = Vkörper x ekörper
ekörperinnen=(H+s)/2
ekörper=H/2
eschale=ys
ys= (Vkörper x ekörper - Vkörperinnen x ekörperinnen) / Vschale
mein Ansatz wäre dann
[mm]y_{s}=\frac{r^{2}\cdot \pi \cdot H\cdot \frac{H}{2} - \pi \cdot \left(r-s\right)^{2} \cdot \left(H-s\right)\cdot \frac{\left(H+s\right)}{2} }{r^{2} \cdot \pi \cdot H- \pi \cdot \left(r-s\right)^{2} \cdot \left(H-s\right)} [/mm]
Nach Auflösung bekomme ich[mm]s^{4} [/mm] und kann die Gleichung nicht lösen.
Stimmt meine Rechnung, stimmt die im buch überhaupt? Wo liegt der Fehler?
Ich wäre um eure Hilfe sehr dankbar.
sabs
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich] Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:35 Mo 04.01.2010 | Autor: | rainerS |
Hallo!
> Ein Bierglas des Durchmessers D, Höhe H und der
> Glasstärke s wird einseitig angehoben. Wie gross darf die
> Höhe h1 werden, damit das Glas nicht umkippt?
> Hallo zusammen
>
> Ich habe im Buch Keine Panik vor Mechanik ein Beispiel das
> ich nicht verstehe, vor allem wird der Ansatz einfach so
> präsentiert und nicht Schritt für Schritt erklärt.
>
> Ich sollte ja klarerweise für den Kippvorgang die
> Schwerpunktkoordinate ys haben, xs ist ja D/2.
> Laut Buch lautet die Formel für ys
> [mm]y_{s}= \frac{\frac{s}{2}\cdot \frac{\pi}{4}\cdot \left(D-2s\right)^{2} \cdot s + \frac{H}{2}\cdot \frac{\pi }{4}\cdot \left(D^{2}- \left(D-2s\right)^{2} \right) \cdot H}{\frac{\pi}{4}\cdot \left(D-2s\right)^{2}\cdot s+ \frac{\pi }{4}\cdot \left(D-2s\right)^{2}\cdot H}=\frac{2\cdot H^{2} }{D+ 4H}[/mm]
Den ersten Bruch kann ich nachvollziehen: Das Bierglas wird zusammengesetzt aus Boden (Scheibe der Dicke $s$ und Druchmesser $(D-2s)$ und Mantel (Zylinder der Höhe $H$, Innendurchmesser $(D-2s)$, Außendurchmesser $D$. Wieso das gleich
[mm] \frac{2\cdot H^{2} }{D+ 4H}[/mm]
sein soll, ist mir schleierhaft. Das Ergebnis muss doch von $s$ abhängen.
> Ich selbst komme aber nicht auf die selbe Lösung da vor
> allem auch im Ansatz für ys irgendwas mit D-2s steht (das
> wäre die Fläche ohne der Glasstärke), in der Angabe laut
> Skizze ist aber der Innendurchmesser D angegeben. Demnach
> müsste also entweder Id=D oder Ad=D+2s verwendet werden.
>
> Ich habe mir überlegt: Verwendung da=D, di=D-2s
> Ich mache ein Gedankenexperiment
> Ich fülle den Hohlraum mit einem Zylinder vom Durchmesser
> D-2s aus
> Somit habe ich dann eine Schale, Vollzylinder und einen
> Innenzylinder.
>
> [mm]V_{Koerper} = r^{2} \cdot \pi \cdot H[/mm]
> [mm]V_{Koerper_{innen} } = \left(r-s\right)^{2} \cdot \pi \cdot \left(H-s\right)[/mm]
>
> [mm]V_{Schale} = r^{2} \cdot \pi \cdot H - \left(r-s\right)^{2} \cdot \pi \cdot \left(H-s\right)[/mm]
>
> Vschale x eschale + Vkörperinnen x ekörperinnen =
> Vkörper x ekörper
> ekörperinnen=(H+s)/2
> ekörper=H/2
> eschale=ys
>
> ys= (Vkörper x ekörper - Vkörperinnen x ekörperinnen) /
> Vschale
>
> mein Ansatz wäre dann
> [mm]y_{s}=\frac{r^{2}\cdot \pi \cdot H\cdot \frac{H}{2} - \pi \cdot \left(r-s\right)^{2} \cdot \left(H-s\right)\cdot \frac{\left(H+s\right)}{2} }{r^{2} \cdot \pi \cdot H- \pi \cdot \left(r-s\right)^{2} \cdot \left(H-s\right)} [/mm]
Das erscheint mir auch richtig. Wenn du ein bischen hin- und herrechnest, stimmt das auch mit dem ersten Bruch oben überein.
>
> Nach Auflösung bekomme ich[mm]s^{4}[/mm] und kann die Gleichung
> nicht lösen.
Da hast du übersehen, dass sich in Zähler und Nenner jeweils der erste Term vor der Klammer gegen den ersten Term in der Klammer weghebt, dadurch kannst du einen Faktor s in Zähler und Nenner kürzen.
>
> Stimmt meine Rechnung, stimmt die im buch überhaupt? Wo
> liegt der Fehler?
Wie gesagt, wo der einfache Ausdruck rechts vom Gleichheitszeichen herkommt, verstehe ich auch nicht.
Viele Grüße
Rainer
|
|
|
|
|
Hallo
Danke für die schnelle Antwort.
Ich habe also die Formel noch weiter gekürzt und zusammengefasst und komme nun auf:
[mm]y_{s} =\frac{1}{2} \cdot \frac{2H^{2}r-H^{2}s-2Hs^{2}+r^{2}s-2rs^{2}-s^{3}}{2Hr-Hs+r^{2}-2rs+s^{2}} [/mm]
[mm]y_{s}=\frac{1}{2} \cdot \frac{2H^{2}r-s\left(H^{2}+2Hs-r^{2}+2rs+s^{2}\right) }{2Hr-Hs+r^{2}-2rs+s^{2}} [/mm]
[mm]y_{s}=\frac{1}{2} \cdot \frac{2H^{2}r-s\left[\left(H+s\right)^{2}-r\cdot \left(r-2s\right)\right] }{H\left(2r-s\right) +\left(r-s\right)^{2} } [/mm]
Sieht nun meiner Meinung nach ein wenig besser aus und ist nun auch von s abhängig, wie es sich gehört.
Wenn in der Formel noch ein Fehler enthalten sein sollte, dann bitte ich um Reaktion.
Ich danke nochmals für deine Hilfe
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:07 Di 05.01.2010 | Autor: | rainerS |
Hallo!
> Hallo
>
> Danke für die schnelle Antwort.
>
> Ich habe also die Formel noch weiter gekürzt und
> zusammengefasst und komme nun auf:
>
> [mm]y_{s} =\frac{1}{2} \cdot \frac{2H^{2}r-H^{2}s-2Hs^{2}+r^{2}s-2rs^{2}-s^{3}}{2Hr-Hs+r^{2}-2rs+s^{2}}[/mm]
Wenn ich mich nicht verrechnet habe, ist der Term [mm] $-2Hs^{2}$ [/mm] im Zähler zuviel. Denn: es steht in der ursprünglichen Formel entweder [mm] $H^2$ [/mm] oder [mm] $(H-s)(H+s)=H^2-s^2$, [/mm] daher kann ein einzelnes $H$ nicht vorkommen.
Das ist dann
[mm] y_s = \frac{1}{2} \cdot \frac{H^2(2r-s) +s (r-s)^2}{H\left(2r-s\right) +\left(r-s\right)^{2} }[/mm]
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:42 Do 07.01.2010 | Autor: | sabrina21 |
Hallo
Habe die Rechnung nochmals gerechnet.
danke, komme auf das selbe Ergebnis
gruss sabs
|
|
|
|