matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSchwerpunkt einer Pyramide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Schwerpunkt einer Pyramide
Schwerpunkt einer Pyramide < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt einer Pyramide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Fr 01.08.2014
Autor: stylez

Aufgabe
Berechnen Sie den Schwerpunkt von:

einer Pyramide im [mm] R^3 [/mm] mit quadratischer Grundfläche der Kantenlänge a und der Höhe h

Hallo zusammen,

ich soll den Schwerpunkt einer Pyramide mit quadratischer Grundfläche bestimmen. Leider weiß ich gar nicht wie ich anfangen soll.

Ich wollte zuerst mal das Volumen der Pyramide durch integration bestimmen, doch ich scheitere schon daran.
Ich habe mir überlegt die Z-Achse durch die Spitze der Pyramide laufen zu lassen, wodurch folgt das die x- und die y-Koordinate des Schwerpunkts gleich 0 ist.

Doch wie mach ich nun weiter?

PS.: ich muss die Aufgabe durch Integration lösen.

Ich hoffe jemand kann mir helfen.

Danke!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Schwerpunkt einer Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Fr 01.08.2014
Autor: rmix22


> Berechnen Sie den Schwerpunkt von:
>  
> einer Pyramide im [mm]R^3[/mm] mit quadratischer Grundfläche der
> Kantenlänge a und der Höhe h
>  Hallo zusammen,
>
> ich soll den Schwerpunkt einer Pyramide mit quadratischer
> Grundfläche bestimmen. Leider weiß ich gar nicht wie ich
> anfangen soll.
>
> Ich wollte zuerst mal das Volumen der Pyramide durch
> integration bestimmen, doch ich scheitere schon daran.
> Ich habe mir überlegt die Z-Achse durch die Spitze der
> Pyramide laufen zu lassen, wodurch folgt das die x- und die
> y-Koordinate des Schwerpunkts gleich 0 ist.
>  
> Doch wie mach ich nun weiter?

Nun, nehmen wir ferner an, dass das Basisquadrat die Seitenlänge a habe und in der Grundrissebene (=1. Bildebene, ="xy-Ebene") liegt und die Pyramide die Höhe h habe, die Spitze S also die Koordinaten (0/0/h) hat.
Wenn du das Volumen der Pyramide mittels Integration über z bestimmen möchtest (eine Formel für das Pyramidenvolumen wirst du ja parat haben), dann musst du dir überlegen, welchen Flächeninhalt der Pyramidenquerschnitt in einer beliebige Höhe z [mm] ($0\le{z}\le{h}$) [/mm] hat.

Außerdem kennst du sicher eine Formel, wie du mithilfe der Integralrechnung und der Kenntnis des Körpervolumens die Schwerpunktskoordinaten ermitteln kannst.

Gruß RMix



Bezug
        
Bezug
Schwerpunkt einer Pyramide: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Sa 02.08.2014
Autor: Leopold_Gast

Ich greife den Ansatz von rmix22 auf, glaube aber, daß es für die Rechnung eine Spur günstiger ist, wenn man die Pyramide "auf den Kopf stellt", also die Spitze der Pyramide in den Ursprung legt und ihr Grundquadrat parallel zur [mm]xy[/mm]-Ebene, so daß seine Ecken die Koordinaten [mm]\left(\pm \frac{a}{2},\pm \frac{a}{2},h \right)[/mm] besitzen. In der Aufgabe steht zwar nichts davon, daß es sich um eine gerade Pyramide handeln soll. Aber ich denke, daß es so gemeint ist.

Es ist klar, daß nun [mm]z \in [0,h][/mm] gilt. Denkt man sich so ein [mm]z[/mm] fest gewählt und macht man in dieser Höhe einen Schnitt durch die Pyramide parallel zur [mm]xy[/mm]-Ebene, so ist die Schnittfläche ein Quadrat (unbedingt eine Zeichnung erstellen). [mm]b(z)[/mm] sei dessen Kantenlänge. Speziell gilt [mm]b(0) = 0[/mm] und [mm]b(h) = a[/mm]. Der Integrationsbereich ist somit die Menge [mm]P[/mm], beschrieben durch

[mm]P: \ \ 0 \leq z \leq h \, , \ \ - \frac{b(z)}{2} \leq x \leq \frac{b(z)}{2} \, , \ \ - \frac{b(z)}{2} \leq y \leq \frac{b(z)}{2}[/mm]

Und die Struktur der Ungleichungen legt nahe, in welcher Reihenfolge später Fubini anzuwenden ist.

Jetzt ist nur noch die Formel für [mm]b(z)[/mm] mit [mm]a,h[/mm] als Parametern zu bestimmen. Es ergibt sich durch eine elementare geometrische Überlegung (Mittelstufe Gymnasium) ein recht einfacher Term.

Das Volumen [mm]V[/mm] der Pyramide berechnet man dann durch

[mm]V = \int_P \mathrm{d}(x,y,z)[/mm]

Es sollte sich die bekannte Formel [mm]V = \frac{1}{3} a^2 h[/mm] ergeben.

Und die [mm]z[/mm]-Koordinate des Schwerpunkts schließlich ist

[mm]z_S = \frac{1}{V} \cdot \int_P z ~ \mathrm{d}(x,y,z)[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]