matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationSchwerpunkt berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Schwerpunkt berechnen
Schwerpunkt berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:44 So 07.06.2009
Autor: royalbuds

Aufgabe 1
Ein Flaechenstueck der $xz$-Ebene ist begrenzt von dem Parabelbogen $x= [mm] \frac{2}{a}(2a^2-z^2)$ [/mm] mit [mm] $(-a\leq [/mm] z [mm] \leq [/mm] a)$ und der Geraden $x=2a$

i) Wo liegt der Schwerpunkt des Flaechenstuecks?

Aufgabe 2
ii) Wie gross ist das Volumen des Koerpers, der bei Rotation der Flaechenstuecks um die $z$-Achse entsteht? Wo liegt der Schwerpunkt.

Hi,

zu i)

um eine genauere Vorstellung zu haben, habe ich das Ding erstmal fuer $a=2$ gezeichnet. [Dateianhang nicht öffentlich] (Achsennamen stimmen hier nicht, aber keine Ahnung wie ich das im Programm aendern kann)
Das dunkle Stueck ist ja meine Flaeche fuer die ich den Schwerpunkt finden soll.
Nun habe ich [mm] $z_s$ [/mm] und [mm] $x_s$ [/mm] wie folgt berechnet:
[mm] $z_s [/mm] = [mm] \frac{1}{F}\integral_{-a}^{a}{ z (\frac{2}{a}(2a^2-z^2)-2a) dz}$ [/mm] und
[mm] $x_s [/mm] = [mm] \frac{1}{2F}\integral_{-a}^{a}{(\frac{2}{a}(2a^2-z^2)-2a)^2 dz}$ [/mm]

und bekomme [mm] $x_s [/mm] = 0$ und [mm] $z_s [/mm] = [mm] \frac{4}{5}a$. [/mm]

Nun endlich zu meiner Frage :)
Setzt ich nun, wie hier im Beispielgraph fuer $a=2$ ein, erhalte ich bei [mm] $z_s [/mm] = [mm] \frac{8}{5}$, [/mm] was ja ungfaehr 2 ist. Wenn ich mir das jetzt an dem Graphen anschaue, ist der Punkt ja garnicht in der Flaeche. Wenn ich aber die "hoehe" der Flaeche von $x=2a$ hinzuaddiere, dann liegt der Punkt richtig,also ungefaehr bei 6 in dem Bild oben. Ist es denn generell so, dass ich den Schwerpunkt jetzt ausgerechnet haben, als wuerde der Graph auf der Achse liegen und nicht nach oben verschoben sein?


zu ii)
Also wenn ich das Teil um die $z$-Achse rotiere, bekomm ich ja einen "Donut", also so einen Kringel mit Loch in der Mitte. Jetzt weis ich ja garnicht, mit welcher Funktion ich die Rotation durchfuehren soll. Muss ich fuer die Rotation jetzt auch wieder $f(z) = [mm] \frac{2}{a}(2a^2-z^2) [/mm] - 2a$ verwenden? Irgendwie muss ich die ja beiden Volumen voneinander abziehen.
Und Schwerpunkt von einem Volumen? Dafuer haben wir nichtmal ne Formel. Geraten wuerde ich sagen, dass der bei (0,0) liegt.

Ich hoffe ich konnte meine Probleme irgendwie verstaendlich rueberbringen.

Gruss

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Schwerpunkt berechnen: Korrektur zu i)
Status: (Antwort) fertig Status 
Datum: 11:13 So 07.06.2009
Autor: steppenhahn

Hallo!

>  Setzt ich nun, wie hier im Beispielgraph fuer [mm]a=2[/mm] ein,
> erhalte ich bei [mm]z_s = \frac{8}{5}[/mm], was ja ungfaehr 2 ist.
> Wenn ich mir das jetzt an dem Graphen anschaue, ist der
> Punkt ja garnicht in der Flaeche. Wenn ich aber die "hoehe"
> der Flaeche von [mm]x=2a[/mm] hinzuaddiere, dann liegt der Punkt
> richtig,also ungefaehr bei 6 in dem Bild oben. Ist es denn
> generell so, dass ich den Schwerpunkt jetzt ausgerechnet
> haben, als wuerde der Graph auf der Achse liegen und nicht
> nach oben verschoben sein?

Ich sehe das Problem darin, dass du ja gewissermaßen nicht die Fläche berechnest, welche du im Bild angegeben hast! Du schließt ja in deinem Integral die rechteckige Fläche unter der Parabel, also [-a,a]x[0,2a] nicht aus.
Ich wäre mir nicht so sicher, dass durch Verschiebung um 2a nach oben der neue Schwerpunkt entsteht. Rechne lieber mit der Funktion

g(z) = f(z) - 2a,

also projiziere sie auf die x-Achse runter, dann hast du die Probleme nicht. Dann darfst du auch ohne Probleme den Schwerpunkt um 2a nach oben verschieben.

Viele Grüße, Stefan.


Bezug
                
Bezug
Schwerpunkt berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 So 07.06.2009
Autor: royalbuds

Hallo,

ich habe gerade meine Aufgabenstellung verbessert. Die $2a$ hab ich abgezogen, habs nur vergessen hinzuschreiben.
Glaube du hast mir den Teil i) trotzdem schon beantwortet. Durch das $-2a$ habe ich wohl die Kurve tatsaechlich auf die $x$-Achse "runterprojeziert"

Bezug
                        
Bezug
Schwerpunkt berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 So 07.06.2009
Autor: steppenhahn

Hallo,

dann dürfte es stimmen :-)
Die Ergebnisse hab ich auch kontrolliert, sind richtig [ok]

Grüße, Stefan.


Bezug
        
Bezug
Schwerpunkt berechnen: Idee zu ii)
Status: (Antwort) fertig Status 
Datum: 11:21 So 07.06.2009
Autor: steppenhahn

Hallo!

Richtig, du musst auf jeden Fall Volumen voneinander abziehen. Und hier sollte man nicht mit $f(z) - 2a$ arbeiten! Dadurch entsteht bei Rotation ja ein ganz anderer Körper. Meine Idee (nicht die beste, aber sie dürfte funktionieren):

- Bestimme die Nullstellen von f(z) und lasse erstmal die gesamte Parabel um die z-Achse rotieren, also mit dem bei dir nicht grau eingezeichneten Teil.
- Nun ziehe zunächst das den Zylinder ab, bei der Rotation des Rechtecks [-a,a]x[0,2a] entstanden ist.
- Nun berechne das Volumen, dass bei Rotation von f(z) im Intervall von [Nullstelle1,a] entsteht, rechne es mal 2 (andere Seite) und ziehe es auch vom Gesamtvolumen ab.

Bei dem Schwerpunkt würde ich dir zustimmen, das sage ich aber nicht aus fachlicher Kompetenz heraus.

Viele Grüße, Stefan.

Bezug
        
Bezug
Schwerpunkt berechnen: Guldin'sche Regel
Status: (Antwort) fertig Status 
Datum: 08:20 Di 09.06.2009
Autor: Loddar

Hallo royalbuds!


Wenn Du von Deiner rotierenden Fläche sowohl den Flächeninhalt al sauch die Lages des Schwerpunktes kennst, bietet sich die []Guldin'sche Regel an mit:
$$V \ = \ [mm] 2*\pi*r*A$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]