matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTechnikSchwerpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Technik" - Schwerpunkt
Schwerpunkt < Technik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 26.11.2010
Autor: Lentio

Aufgabe
Welcher Winkel alpa stellt sich an der frei drehbar
aufgehängten Scheibe ein?

Gegeben: a, [mm] \beta=30 [/mm] Grad

Hallo Leute!

Hoffentlich kann mir jemand helfen. Eine Skizze  findet ihr unter diesem Link
http://www.ifm.tu-berlin.de/fileadmin/fg49/mechanikE/Aufgaben_Katalog.pdf
mit der Aufgabenbezeichnung SW 6.

So, was ich gemacht habe:

die y-Achse hab ich durch die geöffneten Schenkel gelegt (uiuiui...hier gehts heiß her ;) ), der Körper steht mit den spitzen auf der x-Achse. Müsste aussehen wie ein aufgespießtes Brathähnchen.

Schwerpunktberechnung nach [mm] x_s [/mm] = [mm] \bruch{\summe xi*Ai}{\summe Ai} [/mm]
                                                 [mm] y_s [/mm] = [mm] \bruch{\summe yi*Ai}{\summe Ai} [/mm]

mit einem mir gedachtem Rechteck (Körper I) minus DReiecksfläche (Körper II).
Berechnung der weiteren Seite der Dreiecks mit [mm] a=2xsin\bruch{60 Grad}{2}. [/mm] Nach x umgeformt ergibt: x= a. Also ein gleichseitiges Dreieck mit Höhe h [mm] \Rightarrow \bruch{a}{2}\wurzel{3} [/mm]

                [mm] y_i [/mm]    /    [mm] A_i [/mm]    /    [mm] y_i*A_i [/mm]
Körper I     a    /    [mm] 2a^3 [/mm]    /    [mm] 2a^4 [/mm]
Körper II    [mm] \bruch{\bruch{a}{2}\wurzel{3}}{3} [/mm]    /    [mm] -\bruch{a^2\wurzel{3}}{4} [/mm]    /    [mm] \bruch{-a^3}{8} [/mm]    


[mm] y_s [/mm] = [mm] \bruch{\summe yi*Ai}{\summe Ai} [/mm]
[mm] \Rightarrow \bruch{2*a^3-\bruch{a^3}{8}}{2*a^2-\bruch{a^2\wurzel{3}}{4}} =\bruch{2a-\bruch{a}{8}}{2-\bruch{\wurzel{3}}{4}}. [/mm]

Traue dem Ergebnis aber nicht.
Und wie soll das mit dem Winkel gehen? : der Körper pendelt sich doch im Schwerpunkt ein. Eine senkrechte Linie zum Gelenk gezogen, müsste also mit der rechten Körperseite einen Winkel aufspannen, der alpha gleicht?

mfg



        
Bezug
Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Fr 26.11.2010
Autor: metalschulze

Hallo lentio,

> Welcher Winkel alpa stellt sich an der frei drehbar
>  aufgehängten Scheibe ein?
>  
> Gegeben: a, [mm]\beta=30[/mm] Grad
>  Hallo Leute!
>  
> Hoffentlich kann mir jemand helfen. Eine Skizze  findet ihr
> unter diesem Link
> http://www.ifm.tu-berlin.de/fileadmin/fg49/mechanikE/Aufgaben_Katalog.pdf
>  mit der Aufgabenbezeichnung SW 6.
>  
> So, was ich gemacht habe:
>  
> die y-Achse hab ich durch die geöffneten Schenkel gelegt
> (uiuiui...hier gehts heiß her ;) ),[lol] der Körper steht mit
> den spitzen auf der x-Achse. Müsste aussehen wie ein
> aufgespießtes Brathähnchen.
>  
> Schwerpunktberechnung nach [mm]x_s[/mm] = [mm]\bruch{\summe xi*Ai}{\summe Ai}[/mm]
>  
>                                                  [mm]y_s[/mm] =
> [mm]\bruch{\summe yi*Ai}{\summe Ai}[/mm]
>  
> mit einem mir gedachtem Rechteck (Körper I) minus
> DReiecksfläche (Körper II).
>  Berechnung der weiteren Seite der Dreiecks mit
> [mm]a=2xsin\bruch{60 Grad}{2}.[/mm] Nach x umgeformt ergibt: x= a.
> Also ein gleichseitiges Dreieck mit Höhe h [mm]\Rightarrow \bruch{a}{2}\wurzel{3}[/mm]
>  
> [mm]y_i[/mm]    /    [mm]A_i[/mm]    /    [mm]y_i*A_i[/mm]
>  Körper I     a    /    [mm]2a^3[/mm]    /    [mm]2a^4[/mm]
>  Körper II    [mm]\bruch{\bruch{a}{2}\wurzel{3}}{3}[/mm]    /    
> [mm]-\bruch{a^2\wurzel{3}}{4}[/mm]    /    [mm]\bruch{-a^3}{8}[/mm]    
>
>
> [mm]y_s[/mm] = [mm]\bruch{\summe yi*Ai}{\summe Ai}[/mm]
>  [mm]\Rightarrow \bruch{2*a^3-\bruch{a^3}{8}}{2*a^2-\bruch{a^2\wurzel{3}}{4}} =\bruch{2a-\bruch{a}{8}}{2-\bruch{\wurzel{3}}{4}}.[/mm]
>  
> Traue dem Ergebnis aber nicht.

wieso nicht? Rechnung ist doch plausibel, und nach nachrechnen im Kopf auch richtig.

> Und wie soll das mit dem Winkel gehen? : der Körper
> pendelt sich doch im Schwerpunkt ein.

Aufhängung befindet sich senkrecht über dem Schwerpunkt korrekt

> Eine senkrechte Linie
> zum Gelenk gezogen, müsste also mit der rechten
> Körperseite einen Winkel aufspannen, der alpha gleicht?

huh? Nö. [mm] \alpha [/mm] ist doch laut Aufgabe zwischen Körper und Waagerechter definiert, zwischen Senkrechter und Körper ist dann [mm] 90°-\alpha [/mm]

>  
> mfg
>  
>  

Gruß Christian

Bezug
                
Bezug
Schwerpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Fr 26.11.2010
Autor: Lentio

Mensch, genial einfach! Das ich darauf nicht gekommen bin.

Riesen Dank


mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]