matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchwache Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Schwache Konvergenz
Schwache Konvergenz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwache Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 12.08.2009
Autor: Fry

Hallo,

sei [mm] (X_n)_n [/mm] eine unabhängige Folge von B(1;0,5)-verteilten Zufallsgrößen. Dann gilt anscheinend trivialerweise, dass [mm] X_n [/mm] gegen [mm] X_1 [/mm] schwach konvergiert. Allerdings hab ich ein Brett vor dem Kopf. Könnte mir das jemand vielleicht genauer in Formeln erklären?

Danke!

VG
Christian

        
Bezug
Schwache Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mi 12.08.2009
Autor: felixf

Moin Christian!

> sei [mm](X_n)_n[/mm] eine unabhängige Folge von B(1;0,5)-verteilten
> Zufallsgrößen. Dann gilt anscheinend trivialerweise, dass
> [mm]X_n[/mm] gegen [mm]X_1[/mm] schwach konvergiert. Allerdings hab ich ein
> Brett vor dem Kopf. Könnte mir das jemand vielleicht
> genauer in Formeln erklären?

Nun, schwache Konvergenz bei Zufallsvariablen heisst ja nichts anderes als []Konvergenz in Verteilung -- und da alle [mm] $X_i$ [/mm] die gleiche Verteilung haben (und somit auch die gleiche Verteilungsfunktion) macht es nur Sinn dass [mm] $(X_n)_n$ [/mm] schwach gegen [mm] $X_i$ [/mm] konvergiert (fuer jedes $i$).

Ich hoffe das hilft dir weiter, auch wenn es keine richtigen Formeln enthaelt ;)

LG Felix


Bezug
                
Bezug
Schwache Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:47 Mi 12.08.2009
Autor: Fry

Hallo Felix,

daaanke, danke, schäm schon gerade für diese Frage : )
Aber manchmal seh ich das Offensichtliche überhaupt nicht.

Beste Grüße
Christian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]